- 大型语言模型与强化学习的融合:迈向通用人工智能的新范式——基于基础复现的实验平台构建
(initial)
大模型科普人工智能强化学习
1.引言大型语言模型(LLM)在自然语言处理领域的突破,展现了强大的知识存储、推理和生成能力,为人工智能带来了新的可能性。强化学习(RL)作为一种通过与环境交互学习最优策略的方法,在智能体训练中发挥着重要作用。本文旨在探索LLM与RL的深度融合,分析LLM如何赋能RL,并阐述这种融合对于迈向通用人工智能(AGI)的意义。为了更好地理解这一融合的潜力,我们基于“LargeLanguageModela
- 目标检测中衡量模型速度和精度的指标:FPS和mAP
asdfg1258963
目标检测_ai目标检测人工智能
“FPS”和“mAP”分别衡量了模型的速度和精度。FPS(FramesPerSecond)定义:FPS是“每秒传输帧数”的缩写,用于衡量计算机视觉系统(如目标检测、图像识别等)的实时性能。它表示系统每秒钟能够处理的图像或视频帧的数量。重要性:在实时应用中,如自动驾驶、视频监控等,FPS是一个关键指标。高FPS意味着系统能够快速处理输入的图像数据,实现实时响应。计算方式:FPS可以通过以下公式计算:
- 准确率(Precision)和召回率(Recall)
asdfg1258963
目标检测_ai机器学习算法人工智能
准确率(Precision)定义:准确率是指在模型预测为正的样本中,真正为正的样本所占的比例。它关注的是模型预测的准确性。计算公式:Precision=TPTP+FP\text{Precision}=\frac{\text{TP}}{\text{TP}+\text{FP}}Precision=TP+FPTP其中:TP(TruePositive):真正例,模型正确预测为正的样本数。FP(FalseP
- 机器学习中的梯度下降是什么意思?
yuanpan
机器学习人工智能
梯度下降(GradientDescent)是机器学习中一种常用的优化算法,用于最小化损失函数(LossFunction)。通过迭代调整模型参数,梯度下降帮助模型逐步逼近最优解,从而提升模型的性能。1.核心思想梯度下降的核心思想是利用损失函数的梯度(即导数)来指导参数的更新方向。具体来说:梯度:梯度是损失函数对模型参数的偏导数,表示损失函数在当前参数点上的变化率。下降:通过沿着梯度的反方向(即损失函
- MVVM架构在Android中的DataBinding实现案例
朱佳顺
本文还有配套的精品资源,点击获取简介:本实例展示了如何利用Google官方DataBinding库在Android应用中实现MVVM架构模式。通过DataBinding库,开发者能够简洁地将数据绑定到UI元素,从而提高代码的可读性和可维护性。实例中包括了MVVM架构的核心概念,以及如何使用表达式语言、Observable对象、BindingAdapter、Layout文件和DataBindingU
- c++模板初阶
晚安,cheems
c++开发语言
1.泛型编程泛型编程是一种编程范式,它允许程序员在编写代码时定义算法和数据结构时可以处理不同类型的数据,而不必为每种数据类型编写特定的代码。泛型编程的主要目的是提高代码的复用性、灵活性和可维护性。以下是一些关于泛型编程的基本概念:泛型的优点代码复用:同一套代码可以用于不同的数据类型。类型安全:在编译时就能检查出错误,而不是在运行时。性能:由于不需要进行类型转换,可以生成更高效的代码。泛型编程的例子
- 基于异构特征融合与轻量级集成学习的软件漏洞挖掘方案设计与Python实现
rockmelodies
信息安全网络安全机器学习集成学习python机器学习人工智能
标题:基于异构特征融合与轻量级集成学习的软件漏洞挖掘方案设计与Python实现一、方案设计原理异构特征工程静态特征:基于AST的代码属性图(CPG)解析(使用Joern+NetworkX)动态特征:内存访问模式分析(通过QEMU模拟执行)上下文特征:CWE漏洞模式匹配(集成Semgrep规则引擎)轻量级模型架构
- 2025年开源大模型全景:语言、多模态与开发工具的前沿探索
软件职业规划
开源
语言类开源大模型1.Llama系列开发者:Meta发布时间:2024年7月参数量:8B、70B、405B特点:Llama系列模型以其强大的多语言支持和广泛的自然语言处理能力而闻名。它支持文本生成、问答、翻译等多种任务,尤其在处理长篇文本时表现出色,支持高达128K的上下文长度。Meta与超过25个合作伙伴共同推出该系列模型,包括亚马逊云科技、Databricks和英伟达等,推动了开源大模型在工业界
- 使用 Ollama 对 LLaMA-2 模型进行微调的详细指南
软件职业规划
llama
1.环境准备在开始微调之前,需要确保硬件和软件环境满足要求。合适的环境配置可以显著提高微调效率,并减少潜在的错误。1.1硬件要求大语言模型的微调需要强大的计算能力,尤其是GPU资源。以下是推荐的硬件配置:GPU:建议使用至少NVIDIARTX3090或更高配置的GPU。如果条件允许,使用多卡GPU(如RTX4090或A100)可以显著加快训练速度。对于更大的模型(如LLaMA-213B或33B),
- C++深入浅出(六)—— 模板初阶
Albert Edison
深入C++世界c++开发语言类模板函数模板
文章目录1.泛型编程2.函数模板概念格式原理实例化隐式实例化显示实例化模板参数的匹配原则原则一原则二原则三3.类模板格式类模板的实例化1.泛型编程还记得在C语言中,如何实现交换两个对象的函数嘛?代码示例//交换两个整型变量voidSwap1(int*p1,int*p2){inttmp=*p1;
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- AI大模型时代,2025大龄程序员如何轻松转型赢未来?
AI大模型学习不迷路
人工智能自然语言处理大模型大语言模型语言模型程序员转行
当前大龄程序员的处境在科技行业的高速发展中,大龄程序员这一群体正面临着前所未有的挑战。随着新兴技术的不断涌现,如云计算、大数据、人工智能等,传统的编程技能逐渐显得“过时”。同时,年轻一代的程序员以更加低廉的薪酬和旺盛的精力涌入市场,加剧了职场的竞争。对于大龄程序员而言,他们不仅需要应对技能更新的压力,还常常受到年龄歧视的影响,尤其是在追求创新和速度的科技公司中。许多大龄程序员发现自己处于尴尬境地,
- 鑫云科技高性能万兆光纤共享存储------剪辑师们的“福音”
湖边野鹤
音视频图像处理图形渲染实时音视频
4K剪辑卡顿?可能是存储拖了后腿?林宇是个怀揣着导演梦的年轻人,大学毕业后,便一头扎进了影视剪辑的世界。他的剪辑技术在圈内小有名气,可最近,他却被一个问题折磨得焦头烂额。这天,林宇接到了一个重要项目,为一部4K电影预告片做剪辑。他信心满满地坐在电脑前,打开那配置不菲的工作站,导入素材,准备大显身手。然而,刚一开始剪辑,问题就接踵而至。每一次拖动时间轴,电脑都像是老牛拉破车,卡顿得厉害。原本流畅的剪
- 数字孪生对于新基建的价值浅析,算是抛砖引玉。
大牛工控设计师
人工智能信息可视化前端
数字孪生(DigitalTwin)作为一项融合物理世界与数字世界的关键技术,在新基建中扮演着虚实协同、智能决策、全生命周期管理的核心角色,其价值贯穿于基础设施的设计、建设、运维到优化全流程。一、核心价值:虚实映射与智能决策实时动态映射通过传感器、IoT设备实时采集物理实体(如工厂、城市、电网)的运行数据,构建高精度虚拟模型,实现**“所见即所控”**的透明化管理。模拟预测与优化利用AI和大数据分析
- 图解AUTOSAR_CP_ComM
KaiGer666
图解AUTOSAR_CP嵌入式硬件单片机汽车
AUTOSARComM模块详解AUTOSAR通信管理模块详细解析目录1.概述1.1.ComM模块的作用1.2.ComM模块的位置2.架构设计2.1.模块上下文视图2.2.内部组件结构3.状态机3.1.通道状态机3.2.PNC状态机4.配置模型4.1.配置结构4.2.用户-PNC-通道映射5.服务接口5.1.API概述5.2.主要功能6.通信序列<
- HarmonyNext实战:基于ArkTS的高性能实时音视频通信应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能实时音视频通信应用开发引言在HarmonyNext生态系统中,实时音视频通信是一个极具挑战性和实用价值的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的实时音视频通信应用,涵盖从基础概念到高级优化的完整流程。我们将通过一个实际的案例——实时视频会议应用,来展示如何在HarmonyNext平台上实现高效的音视频通信。1.项目概述1.1目标开
- HarmonyNext实战:基于ArkTS的高性能分布式任务调度系统开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能分布式任务调度系统开发引言在HarmonyNext生态系统中,分布式任务调度是一个复杂且关键的技术领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的分布式任务调度系统,涵盖从基础概念到高级优化的完整流程。我们将通过一个实际的案例——分布式计算任务调度系统,来展示如何在HarmonyNext平台上实现高效的任务调度。1.项目概述1.1目标开发
- HuggingFace下载模型并导入Ollama指南
Repetion_Maxumim
embedding语言模型人工智能自然语言处理ai
此处以moka-ai/m3e-base模型下载为例。众所周知,HuggingFace仓库托管了诸多训练模型。DeepSeek官方也将完整满血版DeepSeek-R1:671B模型镜像托管在此仓库,但是目前国内无法直接从HugingFace下载。并且,一般为了快速部署,会选择Ollama这类管模型管理工具,类似Docker引擎一样,但是Ollama支持的模型镜像格式(如GGUF)HuggingFac
- Langchain链式开发:打造高效、可扩展的AI应用
小南AI学院
langchain人工智能软件工程
1.Langchain链是什么?Langchain是一个开源框架,专门用于开发基于大型语言模型(LLMs)的应用程序。它允许开发者将各种组件(如模型、数据源、工具等)连接在一起,构建复杂的AI应用程序。“链”(Chain)在Langchain中是一个核心概念,它代表了多个组件的有序连接,用于完成特定任务。2.Langchain链的职责是什么?Langchain链的主要职责包括:流程编排:管理多个组
- VM架构设计文档初稿v0.01
weixin_34128839
devops大数据系统架构
VM架构设计文档初稿v0.01文档介绍本文档是经过讨论,作为VM新架构设计开发中的重要依据。对该架构的整个系统的结构进行详实细致的描述。阐述框架结构,说明该架构所采取的设计策略和所有技术,并对相关内容作出统一的约定。为设计,编码,测试提供可以参考的模板和帮助。提高设计变更开发的效率,将头脑风暴的结果进行的具体的书面呈现。架构设计思想该架构VM以微服务思想为核心进行衍化,兼容DevOps作为主要基础
- 【eNSP实战】基本ACL实现网络安全
敲键盘的Q
网络
拓扑图要求:PC3不允许访问其他PC和Server1PC2允许访问Server1服务器,不允许其他PC访问各设备IP配置如图所示,这里不做展示AR1接口vlan配置vlanbatch102030#interfaceVlanif10ipaddress192.168.1.254255.255.255.0#interfaceVlanif20ipaddress192.168.2.254255.255.25
- 长文本、知识库、微调对比
司南锤
程序院学习人工智能
长文本、知识库和微调是三种不同的技术手段,用于增强大模型的能力。1.长文本处理•核心目标:理解和生成长篇内容。•优点:•连贯性强,适合处理需要深入理解背景信息的任务。•适合复杂任务,如长篇阅读理解或文章生成。•缺点:•资源消耗大,处理长文本需要更多的计算资源和内存。•受上下文长度限制,可能会丢失一些细节信息。•适用场景:•写作助手:生成长篇博客、报告或故事。•阅读理解:处理长篇阅读理解任务,如学术
- 基于IMX6ULL的安防监控项目
暗夜之眼007
linux
项目功能介绍该项目是基于NXP的IMX6ULL的安防监控项目。应用http微服务器boa实现网页展示监控信息;利用ov5640摄像头模块采集图像信息,并移植mjpg-streamer库实现在远端网页可以查看实时监控图像;利用cgi与html交互实现控制命令的下发和监控数据上传,用户可以在网页端控制硬件,比如LED灯,蜂鸣器等,同时可以在网页端直观查看ICM20608获取的加速度、角速度和温度数据。
- 增量预训练和微调的区别
做个天秤座的程序猿
大模型原理webkit
文章目录前言一、增量预训练和微调的区别二、代码示例1.增量预训练示例2.微调示例3.代码的区别三、数据格式1.增量预训练2.微调3.示例4.小结四、数据量要求1.指导原则2.示例3.实际操作中的考虑4.小结前言增量预训练是一种在现有预训练模型的基础上,通过引入新的数据或任务来进一步训练模型的方法。这种方法的主要目的是在不从头开始训练模型的情况下,利用新数据或特定领域的数据增强模型的能力和性能。增量
- 【Transformer-Hugging Face手册 07/10】 微调预训练模型
无水先生
人工智能高级阶段人工智能综合transformer深度学习人工智能
微调预训练模型-目录一、说明二、在本机PyTorch中微调预训练模型。2.1加载数据2.2训练2.2.1使用PyTorchTrainer进行训练2.3训练超参数2.4评价2.5训练类三、使用Keras训练TensorFlow模型3.1为Keras加载数据3.2将数据加载为tf.data.Dataset3.3数据加载器3.4优化器和学习率调度器3.5训练循环3.6评价四、结论一、说明 使用预训练模
- 模型量化 (Model Quantization) 算法 (Model Quantization Algorithms)
(initial)
大模型科普算法人工智能量化
1模型量化的必要性:降低模型大小、加速推理、减少资源消耗随着深度学习模型的日益复杂和庞大,其在资源受限的设备(如移动端、嵌入式设备)上的部署面临着巨大的挑战。即使在服务器端,部署大型模型也会带来高昂的计算成本和能源消耗。模型量化(ModelQuantization)作为一种关键的模型压缩和加速技术应运而生。其核心思想是将模型中的浮点数(通常是FP32或FP16)表示的权重和激活值转换为低精度整数(
- 负载均衡中四层和七层协议区别
LeonNo11
nginx负载均衡运维
https://www.cnblogs.com/liuzhongkun/p/17046936.html在负载均衡(LoadBalancing)中,四层(L4)负载均衡和七层(L7)负载均衡是两种常见的方式,它们的区别主要体现在工作层级、处理方式、功能特性等方面。1.L4(四层)负载均衡基于TCP/UDP传输层的负载均衡协议层:工作在OSI模型的第4层(传输层)。工作方式:主要依据IP地址和端口号进
- 百度快速收录2025秒收方法实战解析
SEO黑猫
百度
医疗门户网站48小时收录奇迹2023年底,某三甲医院官网改版后遭遇收录难题。通过我们部署的蜘蛛池智能调度系统,配合标题关键词矩阵布局(含’标题内提取’技术),成功实现48小时内全站收录。核心操作步骤:页面指纹构建采用动态TDK模板(例:『科室{科室}科室{病症}_${年份}最新诊疗方案』)植入地域长尾词(如’北京医保报销政策’)蜘蛛池配置方案#智能蜘蛛路由算法示例defschedule_spide
- element-ui动态设置tabel的columns时,切换columns数据表格抖动
zuo-yiran
elementUIvue.jselementui
问题描述:在项目中遇到表格的总表字段和子表字段展示的问题,当字段多向字段少进行切换时表头文字的抖动不明显,但是如果是字段少向字段多的表头进行切换时,表头文字会有闪现的掉下来的视觉感,且使用v-show或v-if等无效。问题分析:elementUI无论是显示列还是隐藏列,都需要重新计算单元格的高和宽,然后再进行重新渲染。抖动的出现是因为这个过程被直接反馈到了页面上。解决办法:可以使用element中
- EventStream 处理实时数据流
小怪兽,让我来保护你
javascriptnode.jsvue.jsscss
简介text/event-stream和application/octet-stream本质上都是客户端与服务端打开了一个长连接,服务端可以多次写入一部分数据给客户端,客户端可以多次读取,直到全部读取完成。使用场景很多,例如:模拟机器人回复,几个词几个词的展示。下面我就以最近的一个功能需求为例,展示一下该如何使用event-stream:streamBack(){consturl="/api/..
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement