- 吴恩达深度学习笔记(30)-正则化的解释
极客Array
正则化(Regularization)深度学习可能存在过拟合问题——高方差,有两个解决方法,一个是正则化,另一个是准备更多的数据,这是非常可靠的方法,但你可能无法时时刻刻准备足够多的训练数据或者获取更多数据的成本很高,但正则化通常有助于避免过拟合或减少你的网络误差。如果你怀疑神经网络过度拟合了数据,即存在高方差问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,这也是非常
- 吴恩达深度学习笔记(24)-为什么要使用深度神经网络?
极客Array
为什么使用深层表示?(Whydeeprepresentations?)我们都知道深度神经网络能解决好多问题,其实并不需要很大的神经网络,但是得有深度,得有比较多的隐藏层,这是为什么呢?我们一起来看几个例子来帮助理解,为什么深度神经网络会很好用。首先,深度网络在计算什么?如果你在建一个人脸识别或是人脸检测系统,深度神经网络所做的事就是,当你输入一张脸部的照片,然后你可以把深度神经网络的第一层,当成一
- 【深度学习笔记】1 数据操作
RIKI_1
深度学习深度学习笔记人工智能
注:本文为《动手学深度学习》开源内容,仅为个人学习记录,无抄袭搬运意图数据操作在深度学习中,我们通常会频繁地对数据进行操作。作为动手学深度学习的基础,本节将介绍如何对内存中的数据进行操作。在PyTorch中,torch.Tensor是存储和变换数据的主要工具。如果你之前用过NumPy,你会发现Tensor和NumPy的多维数组非常类似。然而,Tensor提供GPU计算和自动求梯度等更多功能,这些使
- 【深度学习笔记】6_4 循环神经网络的从零开始实现
RIKI_1
深度学习深度学习笔记rnn
注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图6.4循环神经网络的从零开始实现在本节中,我们将从零开始实现一个基于字符级循环神经网络的语言模型,并在周杰伦专辑歌词数据集上训练一个模型来进行歌词创作。首先,我们读取周杰伦专辑歌词数据集:importtimeimportmathimportnumpyasnpimporttorchfromtorchimport
- 【深度学习笔记】6_10 双向循环神经网络bi-rnn
RIKI_1
深度学习深度学习笔记rnn
注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图6.10双向循环神经网络之前介绍的循环神经网络模型都是假设当前时间步是由前面的较早时间步的序列决定的,因此它们都将信息通过隐藏状态从前往后传递。有时候,当前时间步也可能由后面时间步决定。例如,当我们写下一个句子时,可能会根据句子后面的词来修改句子前面的用词。双向循环神经网络通过增加从后往前传递信息的隐藏层来更
- 深度学习笔记1:神经网络端到端学习笔记
撒哈拉土狼
深度学习
许多重要问题都可以抽象为变长序列学习问题(sequencetosequencelearning),如语音识别、机器翻译、字符识别。这类问题的特点是,1)输入和输出都是序列(如连续值语音信号/特征、离散值的字符),2)序列长度都不固定,3)并且输入输出序列长度没有对应关系。因此,传统的神经网络模型(DNN,CNN,RNN)不能直接以端到端的方式解决这类问题的建模和学习问题。解决变长序列的端到端学习,
- 吴恩达深度学习-L1 神经网络和深度学习总结
向来痴_
深度学习人工智能
作业地址:吴恩达《深度学习》作业线上版-知乎(zhihu.com)写的很好的笔记:吴恩达《深度学习》笔记汇总-知乎(zhihu.com)我的「吴恩达深度学习笔记」汇总帖(附18个代码实战项目)-知乎(zhihu.com)此处只记录需要注意的点,若想看原笔记请移步。1.1深度学习入门我们只需要管理神经网络的输入和输出,而不用指定中间的特征,也不用理解它们究竟有没有实际意义。1.2简单的神经网络——逻
- 深度学习笔记:推理服务
TaoTao Li
tensorflow深度学习深度学习人工智能机器学习
在线推理服务解决的问题样本处理特征抽取(生成)特征抽取过程特征定义通用定义具体定义特征抽取加速Embeding查询NN计算DL框架计算优化图优化量化优化异构计算CodeGen总结参考资料解决的问题模型训练解决模型效果问题,模型推理解决模型实时预测问题。推理服务是把训练好的模型部署到线上,进行实时预测的过程。如阿里的RTP系统顾名思义,实时预测是相对于非实时预测(离线预测)而言,非实时预测是将训练好
- fast.ai 深度学习笔记(三)
绝不原创的飞龙
人工智能人工智能深度学习笔记
深度学习2:第1部分第6课原文:medium.com/@hiromi_suenaga/deep-learning-2-part-1-lesson-6-de70d626976c译者:飞龙协议:CCBY-NC-SA4.0来自fast.ai课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。第6课[##2017年深度学习优
- 深度学习笔记
stoAir
深度学习笔记人工智能
DeepLearningBasic神经网络:algorithm1input1outputinput2input3input4algorithm2监督学习:1个x对应1个y;Sigmoid:激活函数sigmoid=11+e−xsigmoid=\frac{1}{1+e^{-x}}sigmoid=1+e−x1ReLU:线性整流函数;##LogisticRegression-->binaryclassif
- fast.ai 深度学习笔记(六)
绝不原创的飞龙
人工智能人工智能python深度学习
深度学习2:第2部分第12课原文:medium.com/@hiromi_suenaga/deep-learning-2-part-2-lesson-12-215dfbf04a94译者:飞龙协议:CCBY-NC-SA4.0来自fast.ai课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。生成对抗网络(GANs)视频
- fast.ai 深度学习笔记(一)
绝不原创的飞龙
人工智能人工智能深度学习笔记
深度学习2:第1部分第1课原文:medium.com/@hiromi_suenaga/deep-learning-2-part-1-lesson-1-602f73869197译者:飞龙协议:CCBY-NC-SA4.0来自fast.ai课程的个人笔记。随着我继续复习课程以“真正”理解它,这些笔记将继续更新和改进。非常感谢Jeremy和Rachel给了我这个学习的机会。第一课开始[0:00]:为了训练
- 吴恩达深度学习笔记(15)-浅层神经网络之神经网络概述
极客Array
神经网络概述(NeuralNetworkOverview)从今天开始你将学习如何实现一个神经网络。这里只是一个概述,详细的在后面会讲解,看不懂也没关系,先有个概念,就是前向计算然后后向计算,理解了这个就可以了,有一些公式和表达在后面会详细的讲解。在我们深入学习具体技术之前,我希望快速的带你预览一下后续几天你将会学到的东西。现在我们开始快速浏览一下如何实现神经网络。之前我们讨论了逻辑回归,我们了解了
- Tensorflow实战深度学习笔记一
独立开发者Lau
人类直观能力----人工智能(自然语言理解、图像识别、语音识别等)。经验----机器学习。训练----特征相关度。特征提取深度学习---自动地将简单的特征组合成更加复杂的特征,并使用这些复杂特征解决问题。深度学习--------不等于模仿人类大脑。
- 吴恩达深度学习笔记(82)-深度卷积神经网络的发展史
极客Array
为什么要探索发展史(实例分析)?我们首先来看看一些卷积神经网络的实例分析,为什么要看这些实例分析呢?上周我们讲了基本构建,比如卷积层、池化层以及全连接层这些组件。事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络。最直观的方式之一就是去看一些案例,就像很多人通过看别人的代码来学习编程一样,通过研究别人构建有效组件的案例是个不错的办法。实际上在计算机
- 深度学习笔记:灾难性遗忘
UQI-LIUWJ
机器学习笔记
1灾难性遗忘介绍当神经网络被训练去学习新的任务时,它可能会完全忘记如何执行它以前学过的任务。这种现象尤其在所谓的“连续学习”(continuouslearning)或“增量学习”(incrementallearning)场景中很常见2不同视角下看待灾难性遗忘以及对应的解决方法2.1从梯度的视角2.1.1从梯度的视角看灾难性遗忘我们有两个不同任务的损失曲面,用平滑的曲面训练完之后,再在坑坑洼洼的曲面
- 深度学习笔记(九)——tf模型导出保存、模型加载、常用模型导出tflite、权重量化、模型部署
絮沫
深度学习深度学习笔记人工智能
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。本篇博客主要是工具性介绍,可能由于软件版本问题导致的部分内容无法使用。首先介绍tflite:TensorFlowLite是一组工具,可帮助开发者在移动设备、嵌入式设备和loT设备上运行模型,以便实现设备端机器学习。框架具有的主要特性:延时(数据无需往返服务器)隐私(没有任何个人数据离开设备)
- 深度学习笔记(八)——构建网络的常用辅助增强方法:数据增强扩充、断点续训、可视化和部署预测
絮沫
深度学习深度学习笔记人工智能
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图和程序部分引用自北京大学机器学习公开课要构建一个完善可用的神经网络,除了设计网络结构以外,还需要添加一些辅助代码来增强网络运行的稳定性,鲁棒性。可以用来增强的方向主要有个,首先是数据输入前的预处理环节,其次是数据在训练过程中的优化,最后的数据在训练结束后的导出和可视化,同时能够及时保存结
- 深度学习笔记(七)——基于Iris/MNIST数据集构建基础的分类网络算法实战
絮沫
深度学习算法深度学习笔记
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图和程序部分引用自北京大学机器学习公开课认识网络的构建结构在神经网络的构建过程中,都避不开以下几个步骤:导入网络和依赖模块原始数据处理和清洗加载训练和测试数据构建网络结构,确定网络优化方法将数据送入网络进行训练,同时判断预测效果保存模型部署算法,使用新的数据进行预测推理使用Keras快速构
- 《动手学深度学习》学习笔记 第10章 注意力机制
北方骑马的萝卜
《手动深度学习》笔记深度学习学习笔记
本系列为《动手学深度学习》学习笔记书籍链接:动手学深度学习笔记是从第四章开始,前面三章为基础知识,有需要的可以自己去看看关于本系列笔记:书里为了让读者更好的理解,有大篇幅的描述性的文字,内容很多,笔记只保留主要内容,同时也是对之前知识的查漏补缺《动手学深度学习》学习笔记第4章多层感知机《动手学深度学习》学习笔记第5章深度学习计算《动手学深度学习》学习笔记第6章卷积神经网络《动手学深度学习》学习笔记
- 深度学习笔记(六)——网络优化(2):参数更新优化器SGD、SGDM、AdaGrad、RMSProp、Adam
絮沫
深度学习深度学习笔记人工智能
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图和程序部分引用自北京大学机器学习公开课前言在前面的博文中已经学习了构建神经网络的基础需求,搭建了一个简单的双层网络结构来实现数据的分类。并且了解了激活函数和损失函数在神经网络中发挥的重要用途,其中,激活函数优化了神经元的输出能力,损失函数优化了反向传播时参数更新的趋势。我们知道在简单的反
- 李沐—动手学深度学习笔记
比三毛多一根头发
笔记
目录引言1.2机器学习中的关键组件1.3.1监督学习2.预备知识2.1数据操作2.1.3.广播机制2.1.4.索引和切片2.1.5.节省内存2.1.6.转换为其他Python对象2.2.数据预处理2.2.1.读取数据集2.2.2.处理缺失值2.2.3.转换为张量格式2.3.线性代数2.3.2.向量2.3.5.张量算法的基本性质2.3.6.降维3.线性神经网络4.多层感知机4.1多层感知机4.1.1
- 深度学习笔记(四)——使用TF2构建基础网络的常用函数+简单ML分类实现
絮沫
深度学习深度学习笔记分类
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图和程序部分引用自北京大学机器学习公开课TF2基础常用函数1、张量处理类强制数据类型转换:a1=tf.constant([1,2,3],dtype=tf.float64)print(a1)a2=tf.cast(a1,tf.int64)#强制数据类型转换print(a2)查找数据中的最小值和
- 深度学习笔记(三)——NN网络基础概念(神经元模型,梯度下降,反向传播,张量处理)
絮沫
深度学习深度学习笔记网络
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图部分引用自北京大学机器学习公开课人工智能算法的主流分类首先明白一个概念,广义上的人工智能算法并不是只有MachineLearning或DeepLearning,而是一个相对的,能够使用计算机模拟人类智能在一定场景下自动实现一些功能。所以系统控制论中的很多最优控制算法同样可以称之为智能算法
- 深度学习笔记(五)——网络优化(1):学习率自调整、激活函数、损失函数、正则化
絮沫
深度学习深度学习笔记网络tensorflow
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图和程序部分引用自北京大学机器学习公开课通过学习已经掌握了主要的基础函数之后具备了搭建一个网络并使其正常运行的能力,那下一步我们还需要进一步对网络中的重要节点进行优化并加深认知。首先我们知道NN(自然神经)网络算法能够相比传统建模类算法发挥更好效果的原因是网络对复杂非线性函数的拟合效果更好
- 《动手学深度学习》学习笔记 第9章 现代循环神经网络
北方骑马的萝卜
《手动深度学习》笔记深度学习学习笔记
本系列为《动手学深度学习》学习笔记书籍链接:动手学深度学习笔记是从第四章开始,前面三章为基础知识,有需要的可以自己去看看关于本系列笔记:书里为了让读者更好的理解,有大篇幅的描述性的文字,内容很多,笔记只保留主要内容,同时也是对之前知识的查漏补缺9.现代循环神经网络 前一章中我们介绍了循环神经网络的基础知识,这种网络可以更好地处理序列数据。我们在文本数据上实现了基于循环神经网络的语言模型,但是对于
- 《动手学深度学习》学习笔记 第8章 循环神经网络
北方骑马的萝卜
《手动深度学习》笔记深度学习学习笔记
本系列为《动手学深度学习》学习笔记书籍链接:动手学深度学习笔记是从第四章开始,前面三章为基础知识,有需要的可以自己去看看关于本系列笔记:书里为了让读者更好的理解,有大篇幅的描述性的文字,内容很多,笔记只保留主要内容,同时也是对之前知识的查漏补缺8.循环神经网络 到目前为止我们默认数据都来自于某种分布,并且所有样本都是独立同分布的(independentlyandidenticallydistri
- 深度学习笔记(二)——Tensorflow环境的安装
絮沫
深度学习深度学习笔记tensorflow
本篇文章只做基本的流程概述,不阐述具体每个软件的详细安装流程,具体的流程网上教程已经非常丰富。主要是给出完整的安装流程,以供参考环境很重要一个好的算法环境往往能够帮助开发者事半功倍,入门学习的时候往往搭建好环境就已经成功了一半。在机器学习或者深度学习的设计研究中,人们往往会使用已经有的网络框架来构建网络模型和设计各种识别分类或者生成算法。主要可以给我们学习和使用的框架这里推荐两个:Tensorfl
- 2022-01-23 深度学习笔记
Luo_淳
专业学习深度学习人工智能
深度学习笔记引言:机器学习——自动寻找函数。1.你想要找什么函数?①Regression——Theoutputofthefunctionisascalar.②BinaryClassification——OnlyoutputYesorNo.举例:输入句子,输出句子positive还是negtive。③Multi-classClassification——分类,输入图片,输出图片中物品的类型。
- 深度学习笔记:下载鸢尾花数据集,并展示所有的属性
BioVS
pythontensorflownumpy
背景:深度学习课程作业。通过此作业,可了解tensorflow、matplotlib、pandas和numpy。可学习到matplot画图及细节设计,如图的颜色、字体大小、循环画图方法等代码:importtensorflowastfimportmatplotlib.pyplotaspltimportpandasaspdimportnumpyasnpTRAIN_URL="http://downloa
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。