数学中的初等函数

    初等函数(elementary function)包括代数函数和超越函数。初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次的四则运算(有理运算)及有限次复合后所构成的函数类。这是分析学中最常见的函数,在研究函数的一般理论中起重要作用。

初等函数
    初等函数是由幂函数(power function)、指数函数(exponential function)、对数函数(logarithmic function)、三角函数(trigonometric function)、反三角函数(inverse trigonometric function)与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生,并且能用一个解析式表示的函数。
    它是最常用的一类函数,包括常函数、幂函数、指数函数、对数函数、三角函数、反三角函数(以上是基本初等函数),以及由这些函数经过有限次四则运算或函数的复合而得的所有函数。即基本初等函数经过有限次的四则运算或有限次的函数复合所构成并可以用一个解析式表出的函数,称为初等函数。
    还有一系列双曲函数也是初等函数,如sinh的名称是双曲正弦或超正弦,cosh是双曲余弦或超余弦,tanh是双曲正切,coth是双曲余切,sech是双曲正割,csch是双曲余割。初等函数在其定义域内连续。
一个初等函数,除了可以用初等解析式表示以外,往往还有其他表示形式。例如 ,三角函数 y=sinx 可以用无穷级数表为y=x-x3/3!+x5/5!-…初等函数是最先被研究的一类函数,它与人类的生产和生活密切相关,并且应用广泛。为了方便,人们编制了各种函数表,如平方表、开方表、对数表、三角函数表等。

【有理函数】
    实系数多项式称为整有理函数。其中最简单的是线性函数 y=α0+α1x,它的图象是过y轴上y=α0点的斜率为α1的直线。二次整有理函数y=α0+α1x+α2x2的图象为抛物线。
    两个整有理函数之比为分式有理函数。分式有理函数其中最简单的是反比例函数,其图象为双曲线。整有理函数和分式有理函数统称有理函数。有理函数起源于代数学。
两个复系数的多项式之比为有理函数,它实现扩充的复平面到自身的解析映射。分式线性函数是一个特殊的有理函数,它在复分析中有重要的意义。另一个特殊情形是幂函数w=zn,n 是自然数,它在全平面是解析的。因此当n≥2时,它在全平面除z=0以外到处实现共形映射(保角映射)。它将圆周|z|= r变为圆周|w|=rn,将射线argz=θ变为射线argw=nθ。任何一个区域,只要该区域中任两点的辐角差小于2π/n,它就是w=zn的单叶性区域。幂函数w=zn的反函数为根式函数,它有n个值(k=0,1,…,n-1),称为它的分支。它们在任何区域θ1z<θ1+2π中都单值解析。

【代数函数】
     求有理函数的反函数则可产生代数函数。如y=xn的反函数为x=yn。

【超越函数】
    超越函数指变量之间的关系不能用有限次加、减、乘、除、乘方、开方运算表示的函数。如指数函数、对数函数、反三角函数等就属于超越函数。

你可能感兴趣的:(数学之美)