- 数字人分身系统源码搭建定制化开发,支持OEM
在人工智能技术蓬勃发展的今天,数字人分身系统凭借其独特的交互性和广泛的应用场景,成为了众多企业和开发者关注的焦点。从虚拟主播、智能客服到数字员工,数字人分身系统正逐渐渗透到各个领域。本文将详细阐述数字人分身系统源码搭建与定制化开发的全流程,为技术爱好者和企业开发者提供全面的技术参考。一、数字人分身系统概述数字人分身系统是一个综合性的技术解决方案,它融合了计算机图形学、人工智能、语音识别与合成、自然
- 数智管理学(二十五)
虚谷23
数智管理学人工智能网络大数据企业数智化创业创新
三、动态资源优化的实现技术动态资源配置的实现离不开先进的技术支撑,以下几项技术是其关键要素:(一)数字孪生技术:虚拟映射真实资源1.虚拟模型构建与实时同步数字孪生技术通过传感器采集物理资源的各种数据,如设备的几何形状、物理特性、运行状态等,利用计算机图形学、建模技术和仿真技术,构建出与物理资源高度相似的虚拟模型。在智能工厂中,对于每一台生产设备,都可以建立对应的数字孪生模型,该模型不仅包括设备的外
- vtk和opencv和opengl直接的区别是什么?
only-lucky
opencv人工智能计算机视觉
简介VTK、OpenCV和OpenGL是三个在计算机图形学、图像处理和可视化领域广泛使用的工具库,但它们在功能、应用场景和底层技术上存在显著差异。以下是它们的核心区别和特点对比:1.核心功能与定位工具核心功能主要应用领域VTK(VisualizationToolkit)三维可视化&科学计算,提供高级渲染、体绘制、交互式可视化医学影像、地质建模、流体力学仿真OpenCV(OpenSourceComp
- Perlin柏林噪音算法的Java实现
程序逐梦人
算法java开发语言Java
Perlin柏林噪音算法的Java实现柏林噪音是一种用于生成自然、有机和随机纹理的算法。它在计算机图形学、游戏开发和模拟领域中得到广泛应用。本文将介绍如何使用Java实现Perlin柏林噪音算法,并提供相应的源代码。Perlin柏林噪音算法的原理是基于一种平滑的插值方法,通过对不同频率和振幅的噪音值进行叠加,生成连续的随机值。以下是Java代码实现Perlin柏林噪音算法的示例:importjav
- 3D门锁门把模型设计的探索与实践
半清斋
本文还有配套的精品资源,点击获取简介:本文探讨了如何利用计算机图形学和3D建模技术设计逼真、实用且美观的门锁及门把手数字模型。涵盖了从设计到渲染的全过程,包括功能与安全性、材料与质感、细节处理、装配与动画、渲染后期处理以及文件格式的兼容性和标准化定制。同时,利用高级建模软件如Autodesk3dsMax或Blender,提供了详细的3D模型构建、编辑与优化方法。1.计算机图形学和3D建模技术应用在
- 贝塞尔曲线与动画效果:从基础到进阶
江卓尔
贝塞尔曲线动画效果三次贝塞尔二次贝塞尔HTML5Canvas
贝塞尔曲线与动画效果:从基础到进阶背景简介在计算机图形学中,贝塞尔曲线是一种用于设计光滑曲线的重要工具。在动画和游戏开发中,贝塞尔曲线经常被用来生成平滑的运动路径。本章节将深入探讨贝塞尔曲线在动画中的应用,以及如何在HTML5Canvas上模拟物理效果以增强动画的真实感。贝塞尔曲线的基础应用三次贝塞尔曲线需要四个控制点来定义其形状。在本章节中,作者通过一个环形移动对象的示例,向我们展示了三次贝塞尔
- 物理学中的群论:三维空间转动变换
AI天才研究院
AI大模型企业级应用开发实战Agent实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
物理学中的群论:三维空间转动变换1.背景介绍1.1问题的由来在物理学领域,特别是量子力学和相对论中,研究物体在空间中的运动是至关重要的。物体的位置、速度以及更深层次的内在性质都受到物理定律的严格规范。当讨论物体的旋转运动时,数学描述变得尤为重要。在三维空间中,物体的旋转可以通过一组称为“旋转矩阵”或者“欧拉角”的方式来精确描述。这些描述方式不仅在理论物理学中不可或缺,也是计算机图形学、机器人学、航
- 算法导论第十八章 计算几何:算法中的空间艺术
第十八章计算几何:算法中的空间艺术“几何学是描绘宇宙秩序的永恒诗篇。”——约翰内斯·开普勒计算几何将数学的优雅与算法的实用性完美结合,在计算机图形学、机器人导航和地理信息系统中扮演着关键角色。本章将带您探索几何问题的算法解决方案,从基础的点线关系到复杂的空间剖分,揭示算法如何理解和操纵我们的几何世界。18.1几何基础:点、线和多边形18.1.1几何对象的表示在计算几何中,我们使用简洁的数学结构表示
- 分段贝塞尔曲线
士兵突击许三多
matlab基础贝塞尔曲线matlab贝塞尔曲线
分段贝塞尔曲线什么是分段贝塞尔曲线贝塞尔曲线是一种参数化曲线,广泛应用于计算机图形学和相关领域。分段贝塞尔曲线是将多条贝塞尔曲线连接起来形成的更复杂曲线,它能够表示比单条贝塞尔曲线更复杂的形状。基本概念单段贝塞尔曲线:由控制点和Bernstein基函数定义二次贝塞尔曲线(3个控制点)三次贝塞尔曲线(4个控制点)分段贝塞尔曲线:将多条贝塞尔曲线首尾相连C0连续:简单连接,曲线段在连接点处位置相同C1
- 掌握贝塞尔曲线:计算机图形学中的艺术
Compass宁
本文还有配套的精品资源,点击获取简介:贝塞尔曲线是一种在计算机图形学中被广泛使用的参数曲线,由法国工程师皮埃尔·贝塞尔提出。它在设计、动画、游戏开发和路径规划等多领域有着重要应用。通过控制点定义形状,贝塞尔曲线可通过阶数不同的多项式表示,并通过DeCasteljau算法简化计算。在JavaScript环境中,使用贝塞尔曲线可以创建动态效果,并且贝塞尔曲线的源代码包可能包含必要的实现文件。掌握贝塞尔
- 三次贝塞尔曲线绘制与OpenGL实现
Aurora曙光
本文还有配套的精品资源,点击获取简介:三次贝塞尔曲线是计算机图形学中用于平滑插值和形状设计的重要数学模型,由四个控制点定义。本文将详细解释其基本原理、数学公式,并结合OpenGL的使用方法,探讨其在可视化领域的应用。通过实践操作和源代码分析,学习者将掌握绘制三次贝塞尔曲线的技能,并理解其在游戏开发、UI设计和3D建模中的重要性。1.三次贝塞尔曲线基础概念在计算机图形学领域中,三次贝塞尔曲线是构建光
- 线性代数导引:欧几里得空间
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
1.背景介绍线性代数作为计算机科学的基石之一,对人工智能、数据科学、计算机图形学等多个领域都有着深远的影响。本篇博客文章将从欧几里得空间的定义入手,逐步深入讲解线性代数中的核心概念和原理,并结合实际应用场景,展示其强大的计算能力和广泛的适用性。1.1线性代数与欧几里得空间线性代数主要研究线性方程组、向量空间、矩阵等数学工具,以及它们在解决实际问题中的应用。其中,欧几里得空间是线性代数中最为基础和重
- 怎么利用JS根据坐标判断构成单个多边形是否合法
小眼哥
GIS开发前端javascript前端开发语言
怎么利用JS根据坐标判断构成单个多边形是否合法引言在GIS(地理信息系统)、游戏开发、计算机图形学等领域,判断一组坐标点能否构成合法的简单多边形(SimplePolygon)是一个常见需求。合法多边形需要满足几何学上的基本规则,本文将详细介绍如何使用JavaScript实现这一判断。一、什么是合法的简单多边形合法的简单多边形需满足以下条件:顶点数量:至少3个顶点(非共线)闭合性:首尾顶点必须重合(
- OpenGL混合排序实例 - C/C++编写
DarcyCode
c语言c++算法C/C++
OpenGL混合排序实例-C/C++编写在计算机图形学中,混合(blending)是指将两个或多个颜色值按照一定的规则进行合成的过程。在OpenGL中,混合功能是通过混合方程式和混合因子来实现的。混合排序是一种优化技术,用于渲染多个透明物体时避免渲染顺序引起的不正确混合结果。本文将介绍如何使用OpenGL和C/C++编写一个简单的混合排序示例。首先,我们需要创建一个OpenGL窗口和渲染上下文。这
- 用Python实现AIGC驱动的3D模型生成:完整教程
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶pythonAIGC3dai
用Python实现AIGC驱动的3D模型生成:完整教程关键词:AIGC、3D模型生成、Python、深度学习、计算机图形学、生成对抗网络、点云处理摘要:本文详细介绍了如何使用Python实现AIGC(人工智能生成内容)驱动的3D模型生成技术。我们将从基础概念出发,逐步深入讲解3D模型生成的原理、算法实现和实际应用。内容包括3D数据表示方法、生成模型架构设计、训练策略优化以及完整的Python实现代
- 轴对齐包围盒(AABB)和有向包围盒(OBB)介绍
hunjinYang
三维点云建模计算机视觉
基本概念OBB(OrientedBoundingBox)和AABB(Axis-AlignedBoundingBox)是计算机图形学和几何处理中常用的两种包围盒,用于快速估算几何体的空间范围,帮助进行碰撞检测、加速渲染、空间分割等任务。两者有不同的特性和应用场景。下面详细介绍它们的概念、特点以及使用场景。1.AABB(Axis-AlignedBoundingBox)AABB是轴对齐包围盒,其边缘与世
- 常用表示三维点云数据的文本格式——obj、ply、xyz...
hunjinYang
三维点云建模计算机视觉
1.xyz文件.xyz文件格式是一种常用于表示三维点云数据的简单文本格式,通常用于存储3D坐标(x,y,z)信息。它在领域如地理信息系统(GIS)、计算机图形学、3D扫描、激光雷达(LiDAR)等领域非常常见,尤其适合表示点云或散列的3D数据集。.xyz文件格式非常简单,只存储每个点的坐标信息,因此不具备颜色、法线或其他属性的描述。1.1格式结构.xyz文件通常是纯文本文件,每一行表示一个三维点的
- Voronoi 图与 Delaunay 三角剖分
hunjinYang
三维点云建模计算机视觉
Voronoi图与Delaunay三角剖分Voronoi图和Delaunay三角剖分是计算几何中的两个互补的概念,它们被广泛应用于三维建模、地理信息系统、计算机图形学等领域。两者有着紧密的联系,Delaunay三角剖分是Voronoi图的对偶(dual)结构。1.Voronoi图Voronoi图是一种空间划分方法,用于将平面或空间根据一组点分成若干个区域,每个区域都由一个特定的点控制。这些点称为生
- 计算机图形学——Games101深度解析_第二章
Somellllbody
图形渲染游戏程序
三维旋转的符号问题旋转矩阵的符号差异源于坐标系的手系规则和旋转方向定义。首先是我们最常规的绕着z轴旋转,这是右手系下的标准定义,符合"x轴转向y轴"的正方向。Rz(α)=(cosα−sinα00sinαcosα0000100001)\mathbf{R}_z(\alpha)=\begin{pmatrix}\cos\alpha&-\sin\alpha&0&0\\\sin\alpha&\cos\
- Vulkan:Vulkan深度缓冲与混合技术_2024-07-20_14-57-06.Tex
chenjj4003
游戏开发人工智能算法着色器python开发语言numpy
Vulkan:Vulkan深度缓冲与混合技术Vulkan深度缓冲基础深度缓冲的概念深度缓冲(DepthBuffer)是计算机图形学中用于解决场景中物体遮挡问题的一种技术。在Vulkan中,深度缓冲通常与深度测试(DepthTest)和深度写入(DepthWrite)一起使用,以确保只有更靠近观察者的像素被绘制到屏幕上。深度缓冲实质上是一个二维数组,每个元素对应屏幕上的一个像素,存储该像素在场景中的
- strassen算法 DeepMind的AlphaZero最快矩阵乘法的前身
中堂李1027
算法矩阵线性代数
strassen算法DeepMind的AlphaZero最快矩阵乘法的前身矩阵乘法是线性代数中最基础也是最重要的操作之一,广泛应用于科学计算、工程、计算机图形学、机器学习等领域。随着数据规模的不断扩大,如何高效地进行矩阵乘法成为研究的热点。本文将介绍传统的矩阵乘法方法以及一种经典的优化算法——Strassen算法,并探讨它们在4×4矩阵乘法中的应用。目录引言矩阵乘法基础传统矩阵乘法Strassen
- 【计算机图形学CG】虎书第一章——Introduction笔记
IncludeFun
信息可视化几何学游戏引擎图形渲染计算机视觉
1.1GraphicsAreas可以将图形学划分为不同的领域,核心领域有Modeling、Rendering、Animation三个:Modeling:Modelingdealswiththemathematicalspecificationofshapeandappearancepropertiesinawaythatcanbestoredonthecomputer.即Modeling将图形处理
- 山东大学计算机图形学期末复习8——CG11下
平和男人杨争争
图形渲染
CG11下多边形近似问题用多边形近似平滑曲面时,颜色不连续,导致效果不佳。Gouraud着色对于多边形模型,Gouraud提出使用网格顶点周围法向量的平均值作为顶点法向量:n=n1+n2+n3+n4∣n1+n2+n3+n4∣\mathbf{n}=\frac{\mathbf{n}_1+\mathbf{n}_2+\mathbf{n}_3+\mathbf{n}_4}{\left|\mathbf{n}_1
- 山东大学计算机图形学期末复习2——CG01至CG03
平和男人杨争争
图形渲染
可能考的OpenGL1.纹理映射(TextureMapping)GLuinttexture;glGenTextures(1,&texture);//生成纹理对象glBindTexture(GL_TEXTURE_2D,texture);//绑定为2D纹理//设置纹理参数glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);glTexPa
- Opencascade 保存点云为 .stp 和 .step 格式
CwzCode
点云
点云是一种常见的三维数据表示形式,它由大量的离散点组成,每个点都有坐标信息。在三维建模和计算机图形学领域,点云被广泛应用于许多应用程序,例如数字化现实世界中的物体、建筑信息模型(BIM)、虚拟现实和增强现实等。OpenCascade是一个强大的开源几何建模库,提供了许多功能和工具来处理三维几何数据。在本文中,我们将探讨如何使用OpenCascade将点云保存为.stp和.step格式。.STP和.
- 《计算机图形学编程》笔记——第一章
小C酱油兵
图形学图形学opengl
《计算机图形学编程》笔记——第一章入门要求开源代码引用入门嗨,各位读者朋友们好,最近由于看到图形学有很多好玩的东西,于是想着尝试一下入门学习相关知识。图形学的用途非常推荐各位小伙伴看一下胡渊明博士的GAMES201第一讲:GAMES201:高级物理引擎实战指南2020,概述就介绍得非常好,笔者当初看了这一讲以后对图形学产生了浓厚的兴趣,无奈笔者三天打鱼两天晒网。。。遗憾的是,看完第一讲后,后续的内
- 视频编解码学习一之相关学科
小虎卫远程打卡app
视频编解码计算机视觉人工智能深度学习
RGB、YUV等颜色空间(ColorSpace)以及图像的显示、表示、编码等相关的学科通常属于以下领域:图像处理(ImageProcessing)包括图像的表示(如RGB、YUV、HSV等颜色模型)、转换、压缩(如JPEG、PNG)、增强、滤波等基础技术。颜色科学(ColorScience)研究颜色的感知、表示(如CIEXYZ、sRGB、AdobeRGB)、色彩管理、颜色空间转换等。计算机图形学(
- 2024-2025-1 山东大学计算机图形学期末试题回忆版
Heuler
计算机图形学经验分享
2024-2025-1山东大学计算机图形学期末试题回忆版计算机科学与技术学院:辛士庆老师选择题计算机图形学之父?IvanSutherland国内首个获得SIGGRAPH最佳论文奖的学校?山大打印最常用的颜色模式?选项:RGB;CMYK;HSVCMYK正nnn面体的nnn不可能是哪个?选项:4;8;16;20正nnn面体已被证明只有五个:4、6、8、12、20三角网格模型,有1000个顶点,问有多少
- 计算机图形学之父
伸头看云朵
计算机图形学
本文来源:腾讯元宝计算机图形学之父通常被认为是伊万·萨瑟兰(IvanSutherland),他在1963年开发的Sketchpad系统奠定了现代计算机图形学的基础。主要贡献:Sketchpad(1963年)首个交互式图形系统,允许用户通过光笔直接在屏幕上绘制和操作图形。引入了图形用户界面(GUI)、对象层级结构和实时交互等概念。被认为是CAD(计算机辅助设计)和图形化编程的雏形。虚拟现实(VR)先
- 三维场景中的人类动作生成:ZeroHSI 技术解析
数据分析能量站
人工智能
一、研究背景:3D场景中人类动作生成的核心挑战在计算机图形学和人工智能领域,生成**3D场景中人类与物体的自然交互动作**(如“坐在沙发上弹吉他”“在厨房切菜”)长期面临两大瓶颈:运动捕捉数据的稀缺性与高成本:传统方法依赖**运动捕捉(MoCap)数据**训练模型,但高质量3D动作数据需专业设备和演员,采集成本高昂(单小时数据成本超万美元),且覆盖的动作类型有限(仅能捕捉少数基础动作)。公开可用的
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f