最小二乘法(又称最小平方法)是一种数学优化技术。
它通过最小化误差的平方和寻找数据的最佳函数匹配。
利用最小二乘法可以简便地求得未知的数据,
并使得这些求得的数据与实际数据之间误差的平方和为最小。
假设已知有N个点,设这条直线方程为: y = a·x + b
其中,a和b的计算公式如下:
本文对于推导过程不在赘述,网上都有。
算法代码和效果演示
算法代码如下:
//-------------------------------------------------------------
//功能 : 最小二乘法直线拟合 y = a·x + b, 计算系数a 和 b
//参数 : x -- 辐照度的数组
// y -- 功率的数组
// num 是数组包含的元素个数,x[]和y[]的元素个数必须相等
// a,b 都是返回值
//返回 : 拟合计算成功返回true, 拟合计算失败返回false
//作者 :Long
//-------------------------------------------------------------
bool leastSquareLinearFit(float x[], float y[], const int num, float &a, float &b)
{
float sum_x2 = 0.0;
float sum_y = 0.0;
float sum_x = 0.0;
float sum_xy = 0.0;
try {
for (int i = 0; i < num; ++i) {
sum_x2 += x[i]*x[i];
sum_y += y[i];
sum_x += x[i];
sum_xy += x[i]*y[i];
}
} catch (...) {
return false;
}
a = (num*sum_xy - sum_x*sum_y)/(num*sum_x2 - sum_x*sum_x);
b = (sum_x2*sum_y - sum_x*sum_xy)/(num*sum_x2-sum_x*sum_x);
return true;
}
数据样本:
x:
float temp[96] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.46667, 11.4667, 31.6, 52.7333, 80.3333, 116.333, 156.6, 199.4, 242.2, 283.4, 329.2, 379.333, 431.333, 482.6, 541, 594.4, 643.533, 692.133, 736.267, 772.667, 810.133, 841.867, 868.2, 892.4, 917.667, 939.8, 954.667, 969, 976.8, 983.4, 987.467, 994.933, 1023.67, 875.2, 873.933, 758.8, 678.2, 515.867, 782.533, 908.8, 779.2, 831.4, 645.533, 734.067, 679.533, 610.267, 565.067, 512.467, 462, 405.2, 354.133, 302, 247.8, 191.533, 140, 94.2667, 57.5333, 25.9333, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // x
y:
float tempy[96] = {0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 0.595, 1.785, 2.57833, 3.927, 5.79233, 7.379, 9.48133, 11.1473, 12.4167, 13.6627, 16.193701, 18.248699, 19.042, 19.042, 19.105301, 16.6383, 17.240999, 14.631, 11.8217, 11.663, 12.155, 15.488, 21.859301, 19.32, 19.042, 19.6133, 21.105, 22.9937, 20.827299, 23.858299, 23.0333, 19.2883, 15.6937, 21.5893, 23.802999, 20.518299, 21.5893, 17.907301, 17.971001, 17.574301, 16.781, 15.5513, 12.3773, 10.2747, 8.60867, 6.86333, 5.39567, 3.88767, 2.856, 2.142, 2.142, 0.952, 0.952, 0.952, 0.952, 0.952, 0.952, 0.952, 0.952, 0.952, 0.952, 0.952, 0.952, 0.952, 0.952 }; // y
计算结果:
a = 0.0215136
b = 0.608488