- Leetcode — 盛水最多的容器
子辰教育
面试题leetcode算法职场和发展
Leetcode—盛水最多的容器文章目录Leetcode—盛水最多的容器前言题目示例1:示例2:提示:实现C++Java前言虽入大厂好多年,但算法不刷还是不会。人到中年,加上最近周围同事接连的被毕业,有那么一点压力,平时还是要有一点忧患意识。坚持学习,坚持进步,点赞+关注,你我工作永不愁!题目给定一个长度为n的整数数组height。有n条垂线,第i条线的两个端点是(i,0)和(i,height[i
- Leetcode — 正则表达式匹配
子辰教育
面试题leetcode正则表达式算法
Leetcode—正则表达式匹配文章目录Leetcode—正则表达式匹配前言题目示例1:示例2:示例3:提示:实现C++Java前言虽入大厂好多年,但算法不刷还是不会。人到中年,加上最近周围同事接连的被毕业,有那么一点压力,平时还是要有一点忧患意识。坚持学习,坚持进步,点赞+关注,你我工作永不愁!题目给你一个字符串s和一个字符规律p,请你来实现一个支持‘.’和‘*’的正则表达式匹配。‘.’匹配任意
- 人工智能技术的应用前景及未来发展
键盘上的蚂蚁-
人工智能生活
引言人工智能(AI)作为21世纪最具创新性和革命性的技术之一,正在全球范围内深刻地改变着我们的生产、工作和生活方式。随着深度学习、强化学习、自然语言处理(NLP)、计算机视觉(CV)等技术的飞速进展,AI不再仅仅是学术研究中的一个热点,而是渗透到各个行业,成为推动创新、优化生产和提升效率的核心力量。对于开发者来说,理解和掌握AI技术不仅是提升个人技能的途径,更是应对未来技术变革、抓住职业机遇的关键
- AI人工智能深度学习算法:在生物信息学中的应用
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能深度学习算法:在生物信息学中的应用关键词:人工智能、深度学习、生物信息学、基因组学、蛋白质结构预测、药物发现、个性化医疗文章目录AI人工智能深度学习算法:在生物信息学中的应用1.背景介绍2.核心概念与联系2.1人工智能(AI)2.2机器学习(ML)2.3深度学习(DL)2.4生物信息学2.5应用领域3.核心算法原理&具体操作步骤3.1算法原理概述3.1.1卷积神经网络(CNN)3.1.
- Leetcode — 罗马数字转整数
子辰教育
面试题leetcode算法职场和发展
Leetcode—罗马数字转整数文章目录Leetcode—罗马数字转整数前言题目示例1:示例2:示例3:示例4:示例5:提示:实现C++CJava前言虽入大厂好多年,但算法不刷还是不会。人到中年,加上最近周围同事接连的被毕业,有那么一点压力,平时还是要有一点忧患意识。坚持学习,坚持进步,点赞+关注,你我工作永不愁!题目罗马数字包含以下七种字符:I,V,X,L,C,D和M。字符数值I1V5X10L5
- Python3 正则表达式:文本处理的魔法工具
李智 - 重庆
Python精讲精练-从入门到实战python经验分享编程技巧编程实战正则表达式
Python3正则表达式:文本处理的魔法工具内容简介本系列文章是为Python3学习者精心设计的一套全面、实用的学习指南,旨在帮助读者从基础入门到项目实战,全面提升编程能力。文章结构由5个版块组成,内容层层递进,逻辑清晰。基础速通:n个浓缩提炼的核心知识点,夯实编程基础;经典范例:10个贴近实际的应用场景,深入理解Python3的编程技巧和应用方法;避坑宝典:10个典型错误解析,提供解决方案,帮助
- R语言学习笔记5-数据结构-多维数组
Colin♛
R语言r语言学习笔记开发语言数据结构
R语言学习笔记5-数据结构-多维数组多维数组(array)介绍特点和用途创建多维数组多维数组的索引和切片多维数组的运算获取多维数组的维度和属性多维数组的合并和拆分多维数组的逻辑操作多维数组的转置和重塑多维数组的元素操作多维数组的统计函数多维数组的循环操作使用reshape2包的melt()和dcast()函数利用purrr包对多维数组进行函数应用对多维数组进行条件筛选和替换多维数组的子集选择使用d
- R语言学习笔记6-数据框
Colin♛
r语言学习笔记开发语言信息可视化
R语言学习笔记6-数据框数据框(DataFrame)介绍数据框用途创建数据框从矩阵创建数据框索引和切片添加和修改列数据框的预处理数据框的排序数据框的筛选处理缺失值应用函数处理数据重塑数据框使用dplyr进行数据框的管道操作数据框的时间序列操作大数据框的处理数据框的绘图数据框的文本处理数据框的连接与关联按行或列连接数据框按键值关联数据框数据框的条件处理与逻辑操作条件筛选逻辑操作数据框的汇总与统计分析
- K8s ❉ 高级存储-PV / PVC详解
wangjie722703
云计算kubernetes容器
一介绍1基本理念前面已经学习了使用NFS提供存储,此时就要求用户会搭建NFS系统,并且会在yaml配置nfs。由于kubernetes支持的存储系统有很多,要求客户全都掌握,显然不现实。为了能够屏蔽底层存储实现的细节,以便用户使用,kubernetes引用PV和PVC两种资源对象。PV(PersistentVolume)是持久化卷的意思,是对底层的共享存储的一种抽象。一般情况下PV由kuberne
- corba学习笔记
一枚前端猿
CORBA公用对象请求代理(调度)程序体系结构(CommonObjectRequestBrokerArchitecture),缩写为CORBA,是对象管理组织(ObjectManagementGroup)对应当今快速增长的软硬件的协同工作能力的要求而提出的方案。简而言之,CORBA允许应用程序和其他的应用程序通讯,而不论他们在什么地方或者由谁来设计。CORBA曾经是分布式计算的主流技术,在电信等领
- xgboost-spark-scala
maokunnn
DMxgboostsparkscala
今天学习写scala,拿xgboost试一下~先记一下xgboost调参要点:7.xgboost中比较重要的参数介绍(1)objective[default=reg:linear]定义学习任务及相应的学习目标,可选的目标函数如下:“reg:linear”–线性回归。“reg:logistic”–逻辑回归。“binary:logistic”–二分类的逻辑回归问题,输出为概率。“binary:logi
- 二、机器学习模型评估与选择
没见过西瓜嘛
机器学习学习笔记机器学习人工智能数据分析
机器学习模型评估与选择学习笔记一、核心概念1.1经验误差与过拟合误差相关定义错误率与精度:分类错误样本数占样本总数比例为错误率E=a/mE=a/mE=a/m,精度=1-错误率。训练误差与泛化误差:学习器在训练集上误差为训练误差(经验误差),在新样本上误差为泛化误差,泛化误差越小越好。过拟合与欠拟合过拟合:学习器把训练样本学得“太好”,将训练样本特点当作所有样本一般性质,导致泛化性能下降。欠拟合:学
- 深度学习——模型过拟合和欠拟合的原因及解决方法
发呆小天才O.o
深度学习深度学习人工智能
一、定义1.过拟合(Overfitting)过拟合是指模型在训练数据上表现非常好,但在测试数据或新的数据上表现很差的现象。模型过度地学习了训练数据中的细节和噪声,以至于它无法很好地泛化到未见过的数据。例如,在一个图像分类任务中,过拟合的模型可能对训练集中的每一张图像的特定细节(如某张猫图片背景中的一个小污点)都学习得过于精细,以至于在测试集中,只要图像背景稍有不同,就无法正确分类。2.欠拟合(Un
- ORB-SLAM2源码学习:Initializer.cc⑨: Initializer::FindHomography找到最好的单应矩阵H
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉opencvubuntu人工智能矩阵学习
前言该函数功能的实现依赖于之前学习的三个函数特征点的坐标归一化、计算单应矩阵H以及它的评分函数。ORB-SLAM2源码学习:Initializer.cc②:Initializer::Normalize坐标归一化-CSDN博客ORB-SLAM2源码学习:Initializer.cc③:Initializer::ComputeH21计算单应矩阵-CSDN博客ORB-SLAM2源码学习:Initiali
- Python从0到100(四十):Web开发简介-从前端到后端(文末免费送书)
是Dream呀
python前端开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉人工智能ubuntu学习矩阵线性代数
前言这部分函数的实现依赖于之前学习的的检查三角化结果的函数:ORB-SLAM2源码学习:Initializer.cc⑧:Initializer::CheckRT检验三角化结果-CSDN博客这里通过基础矩阵F来恢复位姿和三维点实际上是借助本质矩阵来进行的,相对于用单应矩阵H恢复位姿和三维点来说,它的解的结构较为简单其解的讨论形式也是比较简单的。1.函数声明boolInitializer::Recon
- ORB-SLAM2源码学习:Initializer.cc(11): Initializer::ReconstructH用H矩阵恢复R, t和三维点
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉ubuntu人工智能矩阵学习
前言这个函数的实现依赖于之前学习的检验三角化结果的函数:ORB-SLAM2源码学习:Initializer.cc⑧:Initializer::CheckRT检验三角化结果-CSDN博客位姿可能有多组解,到底哪个才是真正的解呢?方法是实践出真知。根据相应的论文我们分两种情况分别恢复出不同的解,最后得到一个最好的。每种可能的解都需要重复计算一次,最终根据如下条件选择最佳的解:1.最优解成功三角化点数目
- 【TVM 教程】线性和递归核
ApacheTVM是一个端到端的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:TianqiChen下面介绍如何在TVM中进行递归计算(神经网络中的典型模式)。from__future__importabsolute_import,print_functionimporttvmimporttvm.testing
- 运用python进行多任务学习过程中,手动调整权重时,如何选择项目并确定合适的权重值?
大懒猫软件
python学习pytorch重构
在手动调整多任务学习中不同任务的损失权重时,确定合适的权重值是一个需要细致考虑的问题。以下是一些基于最新研究和实践的方法和策略:第一部分:手动调整权重确定合适的权重值1.基于任务的重要性方法:根据任务的重要性手动分配权重。例如,如果一个任务对最终性能的影响更大,可以给予更高的权重。示例:在文本纠错任务中,检测错别字的任务可能比纠正错别字的任务更重要,因此可以给予检测任务更高的权重。2.基于损失值的
- XML 语法
凉风细细
xml
XML的语法规则很简单,且很有逻辑。这些规则很容易学习,也很容易使用。XML声明XML声明文件的可选部分,如果存在需要放在文档的第一行,如下所示:以上实例包含XML版本(version="1.0"),甚至包含字符编码(encoding="utf-8")。UTF-8也是HTML5,CSS,JavaScript,PHP,和SQL的默认编码。XML文档必须有根元素XML必须包含根元素,它是所有其他元素的
- 2025年三个月自学手册 网络安全(黑客技术)
网安kk
web安全安全网络网络安全人工智能
基于入门网络安全/黑客打造的:黑客&网络安全入门&进阶学习资源包什么是网络安全网络安全可以基于攻击和防御视角来分类,我们经常听到的“红队”、“渗透测试”等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。如何成为一名黑客很多朋友在学习安全方面都会半路转行,因为不知如何去学,在这里,我将这个整份答案分为黑客(网络安全)入门必备、黑客(网络安全)职业指南、黑客(网络安全)学习导航
- 2024年自学手册 网络安全(黑客技术)
网安kk
网络安全web安全网络安全学习
基于入门网络安全/黑客打造的:黑客&网络安全入门&进阶学习资源包前言什么是网络安全网络安全可以基于攻击和防御视角来分类,我们经常听到的“红队”、“渗透测试”等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。如何成为一名黑客很多朋友在学习安全方面都会半路转行,因为不知如何去学,在这里,我将这个整份答案分为黑客(网络安全)入门必备、黑客(网络安全)职业指南、黑客(网络安全)学习
- “随机森林”及“混合随机森林和多目标粒子群优化”(RF_MOPSO),以预测目标作为学习方法并分别找到多特征过程的最佳参数(Matlab代码实现)
科研_研学社
随机森林学习方法matlab
欢迎来到本博客❤️❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。目录1概述2.1算例12.2算例23参考文献4Matlab代码实现1概述多目标优化问题普遍涉及到工程设计、生产制造、信息处理等应用领域。粒子群优化算法具有快速收敛、简单易行、并行搜索等特点,特别适合处理多目标优化问题。本文对多目标粒子群优化算法进行系统性的研究,结合随机森林的优势
- PostgreSQL中级专家是什么意思?
leegong23111
postgresqloracle数据库
数据库技术领域,PostgreSQL作为一种广泛使用的开源关系型数据库管理系统,吸引了众多技术人员深入学习和研究。“PostgreSQL中级专家”是对掌握该数据库特定技能层次的一种描述。知识储备中级专家深入理解PostgreSQL的体系结构,包括进程模型、内存管理机制等。他们清楚数据库是如何存储数据,以及各个组件如何协同工作来保证数据的一致性和完整性。精通SQL语言在PostgreSQL中的高级特
- 深入剖析SpringBoot启动机制:run()方法详尽解读
不一样的信息安全
网络
摘要本文深入解析SpringBoot的启动机制,以run()方法为核心,逐步追踪并详细解释其关键步骤。首先探讨run()方法的工作原理,然后深入代码层面分析各个关键环节。文章提供刷新后钩子和启动后任务的代码示例,帮助读者理解SpringBoot源码。通过学习这些内容,读者将掌握SpringBoot的启动流程,并学会将其应用于实际开发中。关键词SpringBoot启动,run()方法,代码解析,刷新
- Java 学习笔记 面向对象的七大设计原则
「已注销」
学习笔记java学习开发语言
文章目录参考资料一、单一职责原则SRP二、开闭原则OCP三、里氏替换原则LSP四、依赖倒转原则DIP五、接口隔离原则ISP六、合成复用原则CRP七、迪米特法则LOD八、总结参考资料参考资料:视频资料面向对象设计,ObjectOrientedDesign,简称OOD。在进行软件开发时,需要考虑项目的可维护性和可复用性,开发项目一般是由一个开发团队来维护,因此我们在编写代码时,应可能规范,防止项目出现
- 【vLLM 学习】使用 OpenVINO 安装
HyperAI超神经
vLLMopenvino人工智能pythonvLLMLLMGPU编程
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/由OpenVINO驱动的vLLM支持来自vLLM支持的模型列表中的所有LLM模型,并且可以在所有x86-64CPU上(至少需要AVX2支持)进行最佳的模型服务。OpenVINO的vLLM后端支持以下高级vLLM特性:前
- 都是基于.NET平台,WPF能取代Winform吗?
zls365365
java编程语言python人工智能移动开发
学Winform还是WPF?很多winform的学者时常在我的技术群咨询要不要学习WPF?我一贯的观点是必须学啊!如果是搞工控做cs软件开发,WPF自然是首选。WPF优势在哪里?①前后端分离:WPF是数据驱动的而非Winform的事件驱动,可以通过属性bing的方式实现界面的数据更新,这样就可以很好地实现前后台的分离,在大型的开发项目中,后端开发人员只用编写VM相关的逻辑,界面视图部分可以去交给美
- C语言学习(四)——字符串处理函数
Nonhap403!
C语言学习字符串处理函数
字符串处理函数(17个)1)gets()#include char *gets(char *s);功能:从标准输入读入字符,并保存到s指定的内存空间,直到出现换行符或读到文件结尾为止。参数:s:字符串首地址返回值:成功:读入的字符串失败:NULLgets(str)与scanf(“%s”,str)的区别:gets(str)允许输入的字符串含有空格scanf(“%s”,str)不允许含有空格注意:由于
- 基于 PyTorch 的深度学习模型开发实战
一ge科研小菜鸡
人工智能深度学习
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言深度学习已广泛应用于图像识别、自然语言处理、自动驾驶等领域,凭借其强大的特征学习能力,成为人工智能的核心技术之一。PyTorch作为当前流行的深度学习框架,提供了灵活的张量操作和动态计算图,便于模型的快速开发和调试。本教程将通过一个完整的深度学习模型开发流程,从数据预处理、模型构建、训练与优化、评估以及部署,帮助读者深入理解深度学习的关键技术
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出