OpenGL光照之基础光照

参考:

https://learnopenglcn.github.io/02%20Lighting/02%20Basic%20Lighting/

冯氏光照模型

冯氏光照模型的主要结构由3个分量组成:
环境(Ambient)、漫反射(Diffuse)和镜面(Specular)光照
OpenGL光照之基础光照_第1张图片
环境光照(Ambient Lighting):
即使在黑暗的情况下,世界上通常也仍然有一些光亮(月亮、远处的光),所以物体几乎永远不会是完全黑暗的。为了模拟这个,我们会使用一个环境光照常量,它永远会给物体一些颜色.


漫反射光照(Diffuse Lighting):
模拟光源对物体的方向性影响(Directional Impact)。它是冯氏光照模型中视觉上最显著的分量。物体的某一部分越是正对着光源,它就会越亮


镜面光照(Specular Lighting):
模拟有光泽物体上面出现的亮点。镜面光照的颜色相比于物体的颜色会更倾向于光的颜色

环境光照

现实生活中的光照极其复杂,通常周围环境会有许多光源。

光的一个属性是,它可以向很多方向发散并反弹,从而能够到达不是非常直接临近的点.

所以,光能够在其它的表面上反射,对一个物体产生间接的影响.

考虑到这种情况的算法叫做全局照明(Global Illumination)算法,但是这种算法既开销高昂又极其复杂。

所以我们将会先使用一个简化的全局照明模型,即环境光照.

使用一个很小的常量(光照)颜色,添加到物体片段的最终颜色中,这样子的话即便场景中没有直接的光源也能看起来存在有一些发散的光

用光的颜色乘以一个很小的常量环境因子,再乘以物体的颜色,然后将最终结果作为片段的颜色

void main()
{
    float ambientStrength = 0.1;
    vec3 ambient = ambientStrength * lightColor;

    vec3 result = ambient * objectColor;
    FragColor = vec4(result, 1.0);
}


漫反射光照

漫反射光照使物体上与光线方向越接近的片段能从光源处获得更多的亮度
OpenGL光照之基础光照_第2张图片
如果光线垂直于物体表面,这束光对物体的影响会最大化.

为了测量光线和片段的角度,我们使用一个叫做法向量(Normal Vector)的东西,它是垂直于片段表面的一个向量(这里以黄色箭头表示



两个单位向量的夹角越小,它们点乘的结果越倾向于1。当两个向量的夹角为90度的时候,点乘会变为0

θ越大,光对片段颜色的影响就应该越小。
所以,计算漫反射光照需要什么?

法向量:一个垂直于顶点表面的向量。
定向的光线:作为光源的位置与片段的位置之间向量差的方向向量。为了计算这个光线,我们需要光的位置向量和片段的位置向量。

法向量

法向量是一个垂直于顶点表面的(单位)向量
由于顶点本身并没有表面,我们利用它周围的顶点来计算出这个顶点的表面.
由于立方体是一个规则的物体,可以把法线数据手工添加到顶点数据中
数据如下

float vertices[] = {
    -0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
     0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f, 
     0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f, 
     0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f, 
    -0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f, 
    -0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f, 

    -0.5f, -0.5f,  0.5f,  0.0f,  0.0f, 1.0f,
     0.5f, -0.5f,  0.5f,  0.0f,  0.0f, 1.0f,
     0.5f,  0.5f,  0.5f,  0.0f,  0.0f, 1.0f,
     0.5f,  0.5f,  0.5f,  0.0f,  0.0f, 1.0f,
    -0.5f,  0.5f,  0.5f,  0.0f,  0.0f, 1.0f,
    -0.5f, -0.5f,  0.5f,  0.0f,  0.0f, 1.0f,

    -0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
    -0.5f,  0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
    -0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
    -0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
    -0.5f, -0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
    -0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,

     0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
     0.5f,  0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
     0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
     0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
     0.5f, -0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
     0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,

    -0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
     0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
     0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
     0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
    -0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
    -0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,

    -0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
     0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
     0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
     0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
    -0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
    -0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f
};

由于我们向顶点数组添加了额外的数据,所以我们应该更新光照的顶点着色器:

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
...

接下来更新顶点属性指针

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);

所有光照的计算都是在片段着色器里进行,所以我们需要将法向量由顶点着色器传递到片段着色器。我们这么做

out vec3 Normal;

void main()
{
    gl_Position = projection * view * model * vec4(aPos, 1.0);
    Normal = aNormal;
}

在片段着色器中定义相应的输入变量

in vec3 Normal;

每个顶点都有了法向量,但是我们仍然需要光源的位置向量和片段的位置向量。
由于光源的位置是一个静态变量,我们可以简单地在片段着色器中把它声明为uniform:

uniform vec3 lightPos;

然后在渲染循环中,更新uniform
使用在前面声明的lightPos向量作为光源位置:

lightingShader.setVec3("lightPos", lightPos);

最后,还需要片段的位置。我们会在世界空间中进行所有的光照计算,因此我们需要一个在世界空间中的顶点位置

可以通过把顶点位置属性乘以模型矩阵(不是观察和投影矩阵)来把它变换到世界空间坐标。这个在顶点着色器中很容易完成,所以我们声明一个输出变量,并计算它的世界空间坐标:

out vec3 FragPos;  
out vec3 Normal;

void main()
{
    gl_Position = projection * view * model * vec4(aPos, 1.0);
    FragPos = vec3(model * vec4(aPos, 1.0));
    Normal = aNormal;
}

在片段着色器中添加相应的输入变量

in vec3 FragPos;

现在可以在片段着色器中添加光照计算了.
第一件事是计算光源和片段位置之间的方向向量

vec3 norm = normalize(Normal);
vec3 lightDir = normalize(lightPos - FragPos);

计算光照时我们通常不关心一个向量的模长或它的位置,我们只关心它们的方向。所以,几乎所有的计算都使用单位向量完成.


下一步,对norm和lightDir向量进行点乘,计算光源对当前片段实际的漫发射影响结果值再乘以光的颜色,得到漫反射分量

float diff = max(dot(norm, lightDir), 0.0);
vec3 diffuse = diff * lightColor;

有了环境光分量和漫反射分量,我们把它们相加然后把结果乘以物体的颜色,来获得片段最后的输出颜色

vec3 result = (ambient + diffuse) * objectColor;
FragColor = vec4(result, 1.0);

完整代码如下

#include 
#include 
#include "shader.h"
#include 
#include 
#include 
#include 
#include "Camera.h"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);

const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;


Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = SCR_WIDTH / 2.0f;
float lastY = SCR_HEIGHT / 2.0f;
bool firstMouse = true;

float deltaTime = 0.0f;	
float lastFrame = 0.0f;

glm::vec3 lightPos(1.2f, 1.0f, 2.0f);
int main(void)
{
	//初始化glfw并创建窗口
	//-------------------
	glfwInit();
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
	GLFWwindow * window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "window", NULL, NULL);
	if (window == NULL)
	{
		std::cout << "Failed to create GLFW window" << std::endl;
		glfwTerminate();
		return -1;
	}
	glfwMakeContextCurrent(window);
	glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
	glfwSetCursorPosCallback(window, mouse_callback);
	glfwSetScrollCallback(window, scroll_callback);
	glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

	//初始化GLAD
	//--------
	if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
	{
		std::cout << "Failed to initialize GLAD" << std::endl;
		return -1;
	}
	glEnable(GL_DEPTH_TEST);
	//创建着色器
	//---------
	Shader lightingShader("D:\\OpenGL\\Project1\\lightshader.vs", "D:\\OpenGL\\Project1\\lightshader.fs");
	Shader lampShader("D:\\OpenGL\\Project1\\4.1.texture.vs", "D:\\OpenGL\\Project1\\4.1.texture.fs");

	//设置顶点坐标,颜色,纹理坐标
	//--------
	float vertices[] = {
		-0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
		 0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
		 0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
		 0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
		-0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
		-0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,

		-0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
		 0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
		 0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
		 0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
		-0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
		-0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,

		-0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
		-0.5f,  0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
		-0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
		-0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
		-0.5f, -0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
		-0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,

		 0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
		 0.5f,  0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
		 0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
		 0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
		 0.5f, -0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
		 0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,

		-0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
		 0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
		 0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
		 0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
		-0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
		-0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,

		-0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
		 0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
		 0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
		 0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
		-0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
		-0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f
	};

	unsigned int VBO, cubeVAO;
	glGenVertexArrays(1, &cubeVAO);
	glGenBuffers(1, &VBO);

	glBindBuffer(GL_ARRAY_BUFFER, VBO);

	glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
	glBindVertexArray(cubeVAO);

	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
	glEnableVertexAttribArray(0);
	glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)(3 * sizeof(float)));
	glEnableVertexAttribArray(1);

	unsigned int lightVAO;
	glGenVertexArrays(1, &lightVAO);
	glBindVertexArray(lightVAO);


	glBindBuffer(GL_ARRAY_BUFFER, VBO);

	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
	glEnableVertexAttribArray(0);



	while (!glfwWindowShouldClose(window))
	{
		float currentFrame = glfwGetTime();
		deltaTime = currentFrame - lastFrame;
		lastFrame = currentFrame;

		processInput(window);

		glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

		lightingShader.use();
		lightingShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f);
		lightingShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);
		lightingShader.setVec3("lightPos", lightPos);

		glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
		glm::mat4 view = camera.GetViewMatrix();
		lightingShader.setMat4("projection", projection);
		lightingShader.setMat4("view", view);


		glm::mat4 model = glm::mat4(1.0f);
		lightingShader.setMat4("model", model);


		glBindVertexArray(cubeVAO);
		glDrawArrays(GL_TRIANGLES, 0, 36);

		lampShader.use();
		lampShader.setMat4("projection", projection);
		lampShader.setMat4("view", view);
		model = glm::mat4(1.0f);
		model = glm::translate(model, lightPos);
		model = glm::scale(model, glm::vec3(0.2f)); // a smaller cube
		lampShader.setMat4("model", model);


		glBindVertexArray(lightVAO);
		glDrawArrays(GL_TRIANGLES, 0, 36);

		glfwSwapBuffers(window);
		glfwPollEvents();
	}
	glDeleteVertexArrays(1, &cubeVAO);
	glDeleteVertexArrays(1, &lightVAO);
	glDeleteBuffers(1, &VBO);

	glfwTerminate();
	return 0;


}
void processInput(GLFWwindow *window)
{
	if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
		glfwSetWindowShouldClose(window, true);

	if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
		camera.ProcessKeyboard(FORWARD, deltaTime);
	if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
		camera.ProcessKeyboard(BACKWARD, deltaTime);
	if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
		camera.ProcessKeyboard(LEFT, deltaTime);
	if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
		camera.ProcessKeyboard(RIGHT, deltaTime);
	if (glfwGetKey(window, GLFW_KEY_E) == GLFW_PRESS)
		camera.ProcessKeyboard(UP, deltaTime);
	if (glfwGetKey(window, GLFW_KEY_Q) == GLFW_PRESS)
		camera.ProcessKeyboard(DOWN, deltaTime);
}

void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{

	glViewport(0, 0, width, height);
}
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
	if (firstMouse)
	{
		lastX = xpos;
		lastY = ypos;
		firstMouse = false;
	}

	float xoffset = xpos - lastX;
	float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top

	lastX = xpos;
	lastY = ypos;

	camera.ProcessMouseMovement(xoffset, yoffset);
}
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
	camera.ProcessMouseScroll(yoffset);
}

法向量只是一个方向向量,不能表达空间中的特定位置,法向量没有齐次坐标。
这意味着,位移不应该影响到法向量
果我们打算把法向量乘以一个模型矩阵,我们就要从矩阵中移除位移部分,只选用模型矩阵左上角3×3的矩阵(注意,我们也可以把法向量的w分量设置为0,再乘以4×4矩阵;这同样可以移除位移)。
对于法向量,我们只希望对它实施缩放和旋转变换

如果模型矩阵执行了不等比缩放,顶点的改变会导致法向量不再垂直于表面了
OpenGL光照之基础光照_第3张图片
在顶点着色器中,我们可以使用inverse和transpose函数自己生成法线矩阵

Normal = mat3(transpose(inverse(model))) * aNormal;

即使是对于着色器来说,逆矩阵也是一个开销比较大的运算,因此,只要可能就应该避免在着色器中进行逆矩阵运算,它们必须为你场景中的每个顶点都进行这样的处理。

用作学习目这样做是可以的,但是对于一个对效率有要求的应用来说,在绘制之前你最好用CPU计算出法线矩阵,然后通过uniform把值传递给着色器(像模型矩阵一样)。

镜面光照

镜面光照也是依据光的方向向量和物体的法向量来决定的,但是它也依赖于观察方向,例如玩家是从什么方向看着这个片段的
OpenGL光照之基础光照_第4张图片
通过反射法向量周围光的方向来计算反射向量,计算反射向量和视线方向的角度差,如果夹角越小,那么镜面光的影响就会越大
观察向量是镜面光照附加的一个变量,我们可以使用观察者世界空间位置和片段的位置来计算它
之后,我们计算镜面光强度,用它乘以光源的颜色,再将它加上环境光和漫反射分量。

为了得到观察者的世界空间坐标,我们简单地使用摄像机对象的位置坐标代替.


把另一个uniform添加到片段着色器,把相应的摄像机位置坐标传给片段着色器:

uniform vec3 viewPos;
lightingShader.setVec3("viewPos", camera.Position);

已经获得所有需要的变量,可以计算高光强度了。
首先,我们定义一个镜面强度(Specular Intensity)变量,给镜面高光一个中等亮度颜色,让它不要产生过度的影响。

float specularStrength = 0.5;

下一步,我们计算视线方向向量,和对应的沿着法线轴的反射向量:

vec3 viewDir = normalize(viewPos - FragPos);
vec3 reflectDir = reflect(-lightDir, norm);

注意的对lightDir向量进行了取反
reflect函数要求第一个向量是从光源指向片段位置的向量,但是lightDir当前正好相反,是从片段指向光源,所以取反。

剩下要做的是计算镜面分量。下面的代码完成了这件事

float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32);
vec3 specular = specularStrength * spec * lightColor;

先计算视线方向与反射方向的点乘(并确保它不是负值),
然后取它的32次幂。这个32是高光的反光度(Shininess)

一个物体的反光度越高,反射光的能力越强,散射得越少,高光点就会越小
OpenGL光照之基础光照_第5张图片
后一件事情是把它加到环境光分量和漫反射分量里,再用结果乘以物体的颜色:

vec3 result = (ambient + diffuse + specular) * objectColor;
FragColor = vec4(result, 1.0);

在光照着色器的早期,开发者曾经在顶点着色器中实现冯氏光照模型。
在顶点着色器中做光照的优势是,相比片段来说,顶点要少得多,因此会更高效,所以(开销大的)光照计算频率会更低。
然而,顶点着色器中的最终颜色值是仅仅只是那个顶点的颜色值,片段的颜色值是由插值光照颜色所得来的。结果就是这种光照看起来不会非常真实,除非使用了大量顶点。

完整代码如下

#include 
#include 
#include "shader.h"
#include 
#include 
#include 
#include 
#include "Camera.h"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);

const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;


Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = SCR_WIDTH / 2.0f;
float lastY = SCR_HEIGHT / 2.0f;
bool firstMouse = true;

float deltaTime = 0.0f;	
float lastFrame = 0.0f;

glm::vec3 lightPos(1.2f, 1.0f, 2.0f);
int main(void)
{
	//初始化glfw并创建窗口
	//-------------------
	glfwInit();
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
	GLFWwindow * window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "window", NULL, NULL);
	if (window == NULL)
	{
		std::cout << "Failed to create GLFW window" << std::endl;
		glfwTerminate();
		return -1;
	}
	glfwMakeContextCurrent(window);
	glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
	glfwSetCursorPosCallback(window, mouse_callback);
	glfwSetScrollCallback(window, scroll_callback);
	glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

	//初始化GLAD
	//--------
	if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
	{
		std::cout << "Failed to initialize GLAD" << std::endl;
		return -1;
	}
	glEnable(GL_DEPTH_TEST);
	//创建着色器
	//---------
	Shader lightingShader("D:\\OpenGL\\Project1\\lightshader.vs", "D:\\OpenGL\\Project1\\lightshader.fs");
	Shader lampShader("D:\\OpenGL\\Project1\\4.1.texture.vs", "D:\\OpenGL\\Project1\\4.1.texture.fs");

	//设置顶点坐标,颜色,纹理坐标
	//--------
	float vertices[] = {
		-0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
		 0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
		 0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
		 0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
		-0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
		-0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,

		-0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
		 0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
		 0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
		 0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
		-0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
		-0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,

		-0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
		-0.5f,  0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
		-0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
		-0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
		-0.5f, -0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
		-0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,

		 0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
		 0.5f,  0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
		 0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
		 0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
		 0.5f, -0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
		 0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,

		-0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
		 0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
		 0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
		 0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
		-0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
		-0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,

		-0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
		 0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
		 0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
		 0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
		-0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
		-0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f
	};

	unsigned int VBO, cubeVAO;
	glGenVertexArrays(1, &cubeVAO);
	glGenBuffers(1, &VBO);

	glBindBuffer(GL_ARRAY_BUFFER, VBO);

	glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
	glBindVertexArray(cubeVAO);

	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
	glEnableVertexAttribArray(0);
	glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)(3 * sizeof(float)));
	glEnableVertexAttribArray(1);

	unsigned int lightVAO;
	glGenVertexArrays(1, &lightVAO);
	glBindVertexArray(lightVAO);


	glBindBuffer(GL_ARRAY_BUFFER, VBO);

	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
	glEnableVertexAttribArray(0);



	while (!glfwWindowShouldClose(window))
	{
		float currentFrame = glfwGetTime();
		deltaTime = currentFrame - lastFrame;
		lastFrame = currentFrame;

		processInput(window);

		glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

		lightPos.x = 1.0f + sin(glfwGetTime()) * 2.0f;
		lightPos.y = sin(glfwGetTime() / 2.0f) * 1.0f;

		lightingShader.use();
		lightingShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f);
		lightingShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);
		lightingShader.setVec3("lightPos", lightPos);
		lightingShader.setVec3("viewPos", camera.Position);


		glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
		glm::mat4 view = camera.GetViewMatrix();
		lightingShader.setMat4("projection", projection);
		lightingShader.setMat4("view", view);


		glm::mat4 model = glm::mat4(1.0f);
		lightingShader.setMat4("model", model);


		glBindVertexArray(cubeVAO);
		glDrawArrays(GL_TRIANGLES, 0, 36);

		lampShader.use();
		lampShader.setMat4("projection", projection);
		lampShader.setMat4("view", view);
		model = glm::mat4(1.0f);
		model = glm::translate(model, lightPos);
		model = glm::scale(model, glm::vec3(0.2f)); // a smaller cube
		lampShader.setMat4("model", model);


		glBindVertexArray(lightVAO);
		glDrawArrays(GL_TRIANGLES, 0, 36);

		glfwSwapBuffers(window);
		glfwPollEvents();
	}
	glDeleteVertexArrays(1, &cubeVAO);
	glDeleteVertexArrays(1, &lightVAO);
	glDeleteBuffers(1, &VBO);

	glfwTerminate();
	return 0;


}
void processInput(GLFWwindow *window)
{
	if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
		glfwSetWindowShouldClose(window, true);

	if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
		camera.ProcessKeyboard(FORWARD, deltaTime);
	if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
		camera.ProcessKeyboard(BACKWARD, deltaTime);
	if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
		camera.ProcessKeyboard(LEFT, deltaTime);
	if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
		camera.ProcessKeyboard(RIGHT, deltaTime);
	if (glfwGetKey(window, GLFW_KEY_E) == GLFW_PRESS)
		camera.ProcessKeyboard(UP, deltaTime);
	if (glfwGetKey(window, GLFW_KEY_Q) == GLFW_PRESS)
		camera.ProcessKeyboard(DOWN, deltaTime);
}

void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{

	glViewport(0, 0, width, height);
}
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
	if (firstMouse)
	{
		lastX = xpos;
		lastY = ypos;
		firstMouse = false;
	}

	float xoffset = xpos - lastX;
	float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top

	lastX = xpos;
	lastY = ypos;

	camera.ProcessMouseMovement(xoffset, yoffset);
}
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
	camera.ProcessMouseScroll(yoffset);
}

你可能感兴趣的:(OpenGL,OpenGL,光照)