# import scipy.misc
import imageio
import scipy.ndimage
import numpy as np
from keras.preprocessing import image
from keras.applications import inception_v3
from keras import backend as K
# 禁用所有与训练有关的操作
K.set_learning_phase(0)
# 构建不包括全连接层的Inception V3网络 使用预训练的ImageNet权重来加载模型
model = inception_v3.InceptionV3(weights='imagenet', include_top=False)
# 这个字典将层的名称映射为一个系数,这个系数定量表示该层激活对你要最大化的损失的贡献大小。
# 注意,层的名称硬编码在内置的 Inception V3 应用中。可以使用 model.summary() 列出所有层的名称
layer_contributions = {
'mixed2': 0.2,
'mixed3': 3.,
'mixed4': 2.,
'mixed5': 1.5,
}
# 创建一个字典,将层的名称映射为层的实例
layer_dict = dict([(layer.name, layer) for layer in model.layers])
# 在定义损失时将层的贡献添加到这个标量变量中
loss = K.variable(0.)
for layer_name in layer_contributions:
coeff = layer_contributions[layer_name]
activation = layer_dict[layer_name].output # 获取层的输出
scaling = K.prod(K.cast(K.shape(activation), 'float32'))
# 将该层特征的L2范数添加到loss中。为了避免出现边界伪影,损失中仅包含非边界的像素
loss += coeff * K.sum(K.square(activation[:, 2: -2, 2: -2, :])) / scaling
dream = model.input
grads = K.gradients(loss, dream)[0]
grads /= K.maximum(K.mean(K.abs(grads)), 1e-7)
outputs = [loss, grads]
fetch_loss_and_grads = K.function([dream], outputs)
def eval_loss_and_grads(x):
outs = fetch_loss_and_grads([x])
loss_value = outs[0]
grad_values = outs[1]
return loss_value, grad_values
def gradient_ascent(x, iterations, step, max_loss=None):
for i in range(iterations):
loss_value, grad_values = eval_loss_and_grads(x)
if max_loss is not None and loss_value > max_loss:
break
print('...Loss value at', i, ':', loss_value)
x += step * grad_values
return x
def resize_img(img, size):
img = np.copy(img)
factors = (1,
float(size[0]) / img.shape[1],
float(size[1]) / img.shape[2],
1)
return scipy.ndimage.zoom(img, factors, order=1)
def save_img(img, fname):
pil_img = deprocess_image(np.copy(img))
# scipy.misc.imsave(fname, pil_img)
# 老版本报错,用新版本的imageio
imageio.imsave(fname, pil_img)
def preprocess_image(image_path):
# Util function to open, resize and format pictures into appropriate tensors.
# 通用函数,用于打开图像、改变图像大小以及将图像格式转换为 Inception V3 模型能够处理的张量
img = image.load_img(image_path)
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = inception_v3.preprocess_input(img)
return img
def deprocess_image(x):
# Util function to convert a tensor into a valid image.
# 通用函数,将一个张量转换为有效图像.
if K.image_data_format() == 'channels_first':
x = x.reshape((3, x.shape[2], x.shape[3]))
x = x.transpose((1, 2, 0))
else:
x = x.reshape((x.shape[1], x.shape[2], 3))
x /= 2.
x += 0.5
x *= 255.
x = np.clip(x, 0, 255).astype('uint8')
return x
# Playing with these hyperparameters will also allow you to achieve new effects
step = 0.01 # Gradient ascent step size, 梯度上升的步长
num_octave = 3 # Number of scales at which to run gradient ascent,运行梯度上升的尺度个数
octave_scale = 1.4 # Size ratio between scales, 两个尺度之间的大小比例
iterations = 20 # Number of ascent steps per scale, 在每个尺度上运行梯度上升的步数
# If our loss gets larger than 10, we will interrupt the gradient ascent process, to avoid ugly artifacts
# 如果损失增大到大于 10,我们要中断梯度上升过程,以避免得到丑陋的伪影
max_loss = 10.
# 使用的图像
base_image_path = '/mnt/projects/deeplearn/codes/test8_1.jpg'
# Load the image into a Numpy array
img = preprocess_image(base_image_path)
# We prepare a list of shape tuples defining the different scales at which we will run gradient ascent
# 准备一个由形状元组组成的列表,它定义了运行梯度上升的不同尺度
original_shape = img.shape[1:3]
successive_shapes = [original_shape]
for i in range(1, num_octave):
shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape])
successive_shapes.append(shape)
# Reverse list of shapes, so that they are in increasing order
successive_shapes = successive_shapes[::-1]
# Resize the Numpy array of the image to our smallest scale
original_img = np.copy(img)
shrunk_original_img = resize_img(img, successive_shapes[0])
for shape in successive_shapes:
print('Processing image shape', shape)
img = resize_img(img, shape)
img = gradient_ascent(img,
iterations=iterations,
step=step,
max_loss=max_loss)
upscaled_shrunk_original_img = resize_img(shrunk_original_img, shape)
same_size_original = resize_img(original_img, shape)
lost_detail = same_size_original - upscaled_shrunk_original_img
img += lost_detail
shrunk_original_img = resize_img(original_img, shape)
save_img(img, fname='dream_at_scale_' + str(shape) + '.png')
save_img(img, fname='final_dream.png')
原始图片:
结果图片:
dream_at_scale_(169, 254).png
dream_at_scale_(237, 356).png
dream_at_scale_(333, 499).png
final最终结果图片: