pytorch用VGG11识别cifar10数据集(训练+预测单张输入图片代码)

首先这是VGG的结构图,VGG11则是红色框里的结构,共分五个block,如红框中的VGG11第一个block就是一个conv3-64卷积层:

pytorch用VGG11识别cifar10数据集(训练+预测单张输入图片代码)_第1张图片

一,写VGG代码时,首先定义一个 vgg_block(n,in,out)方法,用来构建VGG中每个block中的卷积核和池化层:

pytorch用VGG11识别cifar10数据集(训练+预测单张输入图片代码)_第2张图片

n是这个block中卷积层的数目,in是输入的通道数,out是输出的通道数

有了block以后,我们还需要一个方法把形成的block叠在一起,我们定义这个方法叫vgg_stack:

def vgg_stack(num_convs, channels):  # vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))
    net = []
    for n, c in zip(num_convs, channels):
        in_c = c[0]
        out_c = c[1]
        net.append(vgg_block(n, in_c, out_c))
    return nn.Sequential(*net)

右边的注释

vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))

里,(1, 1, 2, 2, 2)表示五个block里,各自的卷积层数目,((3, 64), (64, 128), (128, 256), (256, 512), (512, 512))表示每个block中的卷积层的类型,如(3,64)表示这个卷积层输入通道数是3,输出通道数是64。vgg_stack方法返回的就是完整的vgg11模型了。

 

接着定义一个vgg类,包含vgg_stack方法:

#vgg类
class vgg(nn.Module):
    def __init__(self):
        super(vgg, self).__init__()
        self.feature = vgg_net
        self.fc = nn.Sequential(
            nn.Linear(512, 100),
            nn.ReLU(True),
            nn.Linear(100, 10)
        )

    def forward(self, x):
        x = self.feature(x)
        x = x.view(x.shape[0], -1)
        x = self.fc(x)
        return x

最后:

net = vgg()  #就能获取到vgg网络

那么构建vgg网络完整的pytorch代码是:

def vgg_block(num_convs, in_channels, out_channels):
    net = [nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.ReLU(True)]

    for i in range(num_convs - 1):  # 定义后面的许多层
        net.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1))
        net.append(nn.ReLU(True))

    net.append(nn.MaxPool2d(2, 2))  # 定义池化层
    return nn.Sequential(*net)

# 下面我们定义一个函数对这个 vgg block 进行堆叠
def vgg_stack(num_convs, channels):  # vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))
    net = []
    for n, c in zip(num_convs, channels):
        in_c = c[0]
        out_c = c[1]
        net.append(vgg_block(n, in_c, out_c))
    return nn.Sequential(*net)

#确定vgg的类型,是vgg11 还是vgg16还是vgg19
vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))
#vgg类
class vgg(nn.Module):
    def __init__(self):
        super(vgg, self).__init__()
        self.feature = vgg_net
        self.fc = nn.Sequential(
            nn.Linear(512, 100),
            nn.ReLU(True),
            nn.Linear(100, 10)
        )

    def forward(self, x):
        x = self.feature(x)
        x = x.view(x.shape[0], -1)
        x = self.fc(x)
        return x

#获取vgg网络
net = vgg() 

 

基于VGG11的cifar10训练代码:

import sys
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
from torchvision.datasets import CIFAR10
import torchvision.transforms as transforms

def vgg_block(num_convs, in_channels, out_channels):
    net = [nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.ReLU(True)]

    for i in range(num_convs - 1):  # 定义后面的许多层
        net.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1))
        net.append(nn.ReLU(True))

    net.append(nn.MaxPool2d(2, 2))  # 定义池化层
    return nn.Sequential(*net)

# 下面我们定义一个函数对这个 vgg block 进行堆叠
def vgg_stack(num_convs, channels):  # vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))
    net = []
    for n, c in zip(num_convs, channels):
        in_c = c[0]
        out_c = c[1]
        net.append(vgg_block(n, in_c, out_c))
    return nn.Sequential(*net)

#vgg类
class vgg(nn.Module):
    def __init__(self):
        super(vgg, self).__init__()
        self.feature = vgg_net
        self.fc = nn.Sequential(
            nn.Linear(512, 100),
            nn.ReLU(True),
            nn.Linear(100, 10)
        )

    def forward(self, x):
        x = self.feature(x)
        x = x.view(x.shape[0], -1)
        x = self.fc(x)
        return x


# 然后我们可以训练我们的模型看看在 cifar10 上的效果
def data_tf(x):
    x = np.array(x, dtype='float32') / 255
    x = (x - 0.5) / 0.5
    x = x.transpose((2, 0, 1))  ## 将 channel 放到第一维,只是 pytorch 要求的输入方式
    x = torch.from_numpy(x)
    return x

transform = transforms.Compose([transforms.ToTensor(),
                                    transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
                                    ])

def get_acc(output, label):
    total = output.shape[0]
    _, pred_label = output.max(1)
    num_correct = (pred_label == label).sum().item()
    return num_correct / total


def train(net, train_data, valid_data, num_epochs, optimizer, criterion):
    if torch.cuda.is_available():
        net = net.cuda()
    for epoch in range(num_epochs):
        train_loss = 0
        train_acc = 0
        net = net.train()
        for im, label in train_data:
            if torch.cuda.is_available():
                im = Variable(im.cuda())
                label = Variable(label.cuda())
            else:
                im = Variable(im)
                label = Variable(label)
            # forward
            output = net(im)
            loss = criterion(output, label)
            # forward
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            train_loss += loss.item()
            train_acc += get_acc(output, label)

        if valid_data is not None:
            valid_loss = 0
            valid_acc = 0
            net = net.eval()
            for im, label in valid_data:
                if torch.cuda.is_available():
                    with torch.no_grad():
                        im = Variable(im.cuda())
                        label = Variable(label.cuda())
                else:
                    with torch.no_grad():
                        im = Variable(im)
                        label = Variable(label)
                output = net(im)
                loss = criterion(output, label)
                valid_loss += loss.item()
                valid_acc += get_acc(output, label)
            epoch_str = (
                    "Epoch %d. Train Loss: %f, Train Acc: %f, Valid Loss: %f, Valid Acc: %f, "
                    % (epoch, train_loss / len(train_data),
                       train_acc / len(train_data), valid_loss / len(valid_data),
                       valid_acc / len(valid_data)))
        else:
            epoch_str = ("Epoch %d. Train Loss: %f, Train Acc: %f, " %
                         (epoch, train_loss / len(train_data),
                          train_acc / len(train_data)))

        # prev_time = cur_time
        print(epoch_str)

if __name__ == '__main__':
    # 作为实例,我们定义一个稍微简单一点的 vgg11 结构,其中有 8 个卷积层
    vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))
    print(vgg_net)

    train_set = CIFAR10('./data', train=True, transform=transform, download=True)
    train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
    test_set = CIFAR10('./data', train=False, transform=transform, download=True)
    test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)

    net = vgg()
    optimizer = torch.optim.SGD(net.parameters(), lr=1e-1)
    criterion = nn.CrossEntropyLoss() #损失函数为交叉熵

    train(net, train_data, test_data, 50, optimizer, criterion)
    torch.save(net, 'vgg_model.pth')

结束后,会出现一个模型文件vgg_model.pth

 

二,然后网上找张图片,把图片缩成32x32,放到预测代码中,即可有预测结果出现,预测代码如下:

import torch
import cv2
import torch.nn.functional as F
from vgg2 import vgg ##重要,虽然显示灰色(即在次代码中没用到),但若没有引入这个模型代码,加载模型时会找不到模型
from torch.autograd import Variable
from torchvision import datasets, transforms
import numpy as np

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
if __name__ == '__main__':
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = torch.load('vgg_model.pth')  # 加载模型
    model = model.to(device)
    model.eval()  # 把模型转为test模式

    img = cv2.imread("horse.jpg")  # 读取要预测的图片
    trans = transforms.Compose(
        [
            transforms.ToTensor(),
            transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
        ])

    img = trans(img)
    img = img.to(device)
    img = img.unsqueeze(0)  # 图片扩展多一维,因为输入到保存的模型中是4维的[batch_size,通道,长,宽],而普通图片只有三维,[通道,长,宽]
    # 扩展后,为[1,1,28,28]
    output = model(img)
    prob = F.softmax(output,dim=1) #prob是10个分类的概率
    print(prob)
    value, predicted = torch.max(output.data, 1)
    print(predicted.item())
    print(value)
    pred_class = classes[predicted.item()]
    print(pred_class)



    # prob = F.softmax(output, dim=1)
    # prob = Variable(prob)
    # prob = prob.cpu().numpy()  # 用GPU的数据训练的模型保存的参数都是gpu形式的,要显示则先要转回cpu,再转回numpy模式
    # print(prob)  # prob是10个分类的概率
    # pred = np.argmax(prob)  # 选出概率最大的一个
    # # print(pred)
    # # print(pred.item())
    # pred_class = classes[pred]
    # print(pred_class)

缩成32x32的图片:

pytorch用VGG11识别cifar10数据集(训练+预测单张输入图片代码)_第3张图片

运行结果:

pytorch用VGG11识别cifar10数据集(训练+预测单张输入图片代码)_第4张图片

你可能感兴趣的:(#,神经网络,#,pytorch框架)