决策树 书上的例题

from math import  log
import operator

def calcShannonEnt(dataSet):
    numEntries=len(dataSet);
    lableCounts={};
    for featVec in dataSet:
        currentLabel=featVec[-1];
        if currentLabel not in lableCounts.keys():
            lableCounts[currentLabel]=0;
        lableCounts[currentLabel]+=1;
    shannonEnt=0.0;
    for key in lableCounts:
        prob= float(lableCounts[key])/numEntries;
        shannonEnt-=prob* log(prob,2);
    return shannonEnt;

def createDataSet():
    dataSet=[[1,1,'yes'],
             [1,1,'yes'],
             [1,0,'no'],
             [0,1,'no'],
             [0,1,'no']]
    labels=['no surfacing','flippers']
    return dataSet,labels;

def splitDataSet(dataSet,axis,value):
    retDataSet=[];
    for featVec in dataSet:
        if featVec[axis]== value:
            reduceFeatVec=featVec[:axis];
            reduceFeatVec.extend(featVec[axis+1:]);
            retDataSet.append(reduceFeatVec);
    return retDataSet;

def chooseBestFeatureToSplit(dataSet):
    numFeatures=len(dataSet[0])-1;
    baseEntropy=calcShannonEnt(dataSet);
    bestInfoGain=0.0;bestFeature=-1;
    for i in range(numFeatures):
        featList=[example[i] for example in dataSet];
        uniqueVals=set(featList);
        newEntropy=0.0;
        for value in uniqueVals:
            subDataSet=splitDataSet(dataSet,i,value);
            prob=len(subDataSet)/float(len(dataSet));
            newEntropy+=prob*calcShannonEnt(subDataSet);
        infoGain=baseEntropy-newEntropy;
        if(infoGain>bestInfoGain):
            bestInfoGain=infoGain;
            bestFeature=i;
    return bestFeature;

def majorityCnt(classList):
    classCount={};
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote]=0;
        classCount[vote]+=1;
    sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True);
    return sortedClassCount[0][0];

def createTree(dataSet,labels):
    classList=[example[-1] for example in dataSet];
    if classList.count(classList[0])==len(classList):
        return classList[0];
    if len(dataSet[0])==1:
        return majorityCnt(classList);
    bestFeat=chooseBestFeatureToSplit(dataSet);
    bestFeatLabel=labels[bestFeat];
    myTree={bestFeatLabel:{}};
    del(labels[bestFeat]);
    featValues=[example[bestFeat] for example in dataSet];
    uniqueVals=set(featValues);
    for value in uniqueVals:
        subLabels=labels[:];
        myTree[bestFeatLabel][value]=createTree(splitDataSet(dataSet,bestFeat,value),subLabels);
    return myTree;
View Code

 

转载于:https://www.cnblogs.com/cherryMJY/p/8529369.html

你可能感兴趣的:(决策树 书上的例题)