- 深入解析ID3算法:信息熵驱动的决策树构建基石
大千AI助手
人工智能Python#OTHER算法决策树机器学习人工智能DecisionTreeID3信息熵
本文来自「大千AI助手」技术实战系列,专注用真话讲技术,拒绝过度包装。ID3(IterativeDichotomiser3)是机器学习史上的里程碑算法,由RossQuinlan于1986年提出。它首次将信息论引入决策树构建,奠定了现代决策树的理论基础。本文将深入剖析其数学本质与实现细节。往期文章推荐:20.用Mermaid代码画ER图:AI时代的数据建模利器19.ER图:数据库设计的可视化语言-搞
- 理解自信息和信息熵——为什么自信息这样算?
Colin_Downey
随笔信息熵机器学习概率论
一直对香农的信息熵(InformationEntropy)都没有一个非常感性的认识,今日摸鱼学习了一下这个问题。我们先来看看香农是怎么看待交流中的“信息”:“Thefundamentalproblemofcommunicationisthatofreproducingatonepointeitherexactlyorapproximatelyamessageselectedatanotherpoi
- 机器学习与深度学习21-信息论
my_q
机器学习与深度学习机器学习深度学习人工智能
目录前文回顾1.信息上的概念2.相对熵是什么3.互信息是什么4.条件熵和条件互信息5.最大熵模型6.信息增益与基尼不纯度前文回顾上一篇文章链接:地址1.信息上的概念信息熵(Entropy)是信息理论中用于度量随机变量不确定性的概念。它表示了对一个随机事件发生的预测的平均困惑程度或信息量。对于一个离散型随机变量X,其信息熵H(X)定义为所有可能取值的负概率加权平均。数学上,可以使用以下公式来计算离散
- 头歌实践教学平台python机器学习-决策树
学习只是用户态
1024程序员节
决策树简述下列说法正确的是?A、训练决策树的过程就是构建决策树的过程B、ID3算法是根据信息增益来构建决策树下列说法错误的是?B、决策树只能是一棵二叉树决策树算法任务描述本关任务:编写一个使用决策树算法进行信息增益计算及结点划分的程序。相关知识为了完成本关任务,你需要掌握:1.决策树模型,2.决策树模型用于分类,3.决策树信息熵构建。决策树模型决策树(DecisionTree)是在已知各种情况发生
- 从入门到精通:Codeup 与 Git 的高效协作实践
2302_81677011
gitcodeup
一、Codeup与Git的深度解析1.1Codeup的企业级特性作为阿里云推出的一站式代码管理平台,Codeup在以下方面展现出独特优势:安全防护体系:数据加密存储:采用AES-256算法对代码仓库进行静态加密,确保即使物理存储泄露也无法破解。智能敏感信息检测:通过正则匹配+信息熵+上下文语义的三层模型,精准识别硬编码密钥、邮箱等敏感信息,误报率低于5%。细粒度权限控制:支持企业-代码组-仓库-成
- 【机器学习】决策树
YoseZang
机器学习机器学习决策树人工智能
决策树V1.0决策树的概念决策树的结构决策树的构建划分标准的选择信息熵基尼系数划分标准举例节点划分标准的选择流程决策树分裂过程的停止V1.0决策树的概念决策树是属于用树的形式,在树的每一个内部节点上使用1个划分标准,对在该节点上待划分的样本进行划分,划分成2个类别,2堆样本可以作为叶子节点,认为其中样本都属于某个分类,也可以继续使用另1个划分标准继续划分。决策树的每个结点的划分标准是通过学习得到的
- DeepSeek与搜索引擎:AI生成内容如何突破“语义天花板”
weixin_45788582
人工智能DeepSeekai搜索引擎
一、搜索引擎的“内容饥饿症”与AI的“产能悖论”2024年,全球每天新增470万篇网络文章,但搜索引擎的索引拒绝率高达68%。这一矛盾的根源在于:算法对“高质量原创”的定义已从“形式独特性”转向“认知增值性”。传统AI生成内容(如通用GPT模型)虽能快速填充关键词,却难以突破“语义天花板”——即内容的信息熵无法超越训练数据集的平均认知水平。DeepSeek的突破性在于:通过“领域知识蒸馏”技术,将
- 信息论初级——信源概述——2020-11-11
青州街打工人
信息熵
信息论初级——信源概述内容:一、信源的数学模型以及分类二、离散信源信息熵以及其性质三、随机波形信源四、信源的冗余度关于连续与离散的一些思考:我觉得,连续的本质是离散,即万物皆离散。在定义中,连续的例子有语音信号、热噪音信号等,这些例子如果以生活的角度去看,确实是连续的,因为你发音的时候喉咙是一直在震动的,发出的声音是“连续”的,但是如果将你发出声音的单位时间无限缩小,其实你发出的声音是一帧一帧的,
- 机器学习经典算法:决策树原理详解
xiaoyu❅
机器学习算法决策树
决策树(DecisionTree)是一种直观且强大的机器学习算法,被广泛用于分类与回归任务。本文从核心原理(信息熵、基尼系数)、构建过程(ID3/C4.5/CART)、剪枝优化到Python代码实战,全方位解析决策树,并教你如何用Graphviz可视化树结构!目录一、什么是决策树?二、决策树的核心原理1.特征划分标准2.关键公式推导3.决策树构建流程三、Python代码实战1.数据集准备2.模型训
- 决策树的核心思想
code 旭
AI人工智能学习决策树算法机器学习
一、决策树的核心思想本质:通过特征判断对数据集递归划分,形成树形结构。目标:生成一组“若-则”规则,使数据划分到叶子节点时尽可能纯净。关键流程:特征选择:选择最佳分裂特征(如信息增益最大)。节点分裂:根据特征取值划分子节点。停止条件:节点样本纯度过高或样本数过少时终止。二、数学公式与理论1.信息熵(InformationEntropy)衡量数据集的混乱程度:H(D)=−∑k=1Kpklog2pk
- 结构化思考和金字塔结构之:信息检索与知识获取
AI天才研究院
架构师必知必会系列编程实践大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.1概念定义2.2检索阶段2.3提取阶段3.1信息检索和文本信息处理的组成3.2技术总体架构3.3信息检索的关键技术3.3.1倒排索引和TF-IDF权值3.3.1.1倒排索引3.3.1.2TF-IDF权值3.3.2文档集合模型3.3.3语言模型3.3.3.1词袋模型3.3.3.2n-gram模型3.3.4PageRank算法3.3.5信息熵的实体抽取3
- 完整代码详解:Python实现基于文本内容的用户隐私泄露风险评估
mosquito_lover1
python开发语言
主要应用场景:社交网络隐私风险评估实现一个基于文本内容的用户隐私泄露风险评估系统,涉及多个步骤和技术。以下是一个完整的Python代码示例,涵盖了基于BERT的文本表示、基于聚类的文本隐私体系构建、基于命名实体识别的隐私信息提取、以及基于信息熵的文本隐私量化。1.安装所需的库首先,确保你已经安装了以下Python库:pipinstalltransformersscikit-learnnumpypa
- AI编程赋能Python实现零编程决策树算法
智享食事
算法AI编程python
1.概念理解决策树算法是一种监督学习算法,用于分类和回归任务。它是一种基于树结构的模型,通过一系列的决策规则来对数据进行分类或预测。决策树的每个节点代表一个特征,每个分支代表该特征的一个属性值,而每个叶节点表示一个类别或一个数值。决策树的构建过程通常分为以下几个步骤:1.特征选择:选择最佳的特征来作为当前节点的划分特征,通常使用信息增益、基尼指数或者信息熵等准则来选择最优的特征。2.建立树结构:根
- 信息熵(entropy)定义公式的简单理解
xiongxyowo
杂文划水
首先公式长这样:H(X)=−∑i=1np(xi)logp(xi)H(X)=-\sum_{i=1}^{n}p\left(x_{i}\right)\logp\left(x_{i}\right)H(X)=−i=1∑np(xi)logp(xi)PxiP_{x_{i}}Pxi表示随机事件X为xix_{i}xi的概率。这里直接给出一些结论。对于某一事件,其发生的概率越小,那么其信息量越大;发生的概率越大,那
- 智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法神经网络人工智能
智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割文章目录智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割1.天鹰算法2.PCNN网络3.实验结果4.参考文献5.Matlab代码摘要:本文利用天鹰算法对脉冲耦合神经网络的参数进行优化,以信息熵作为适应度函数,提高其图像分割的性能。1.天鹰算法天鹰算法原理请参考:https://blog.csdn.net/u011835903/
- 决策树算法总结(上:ID3,C4.5决策树)
陈小虾
机器学习ID3决策树决策树
文章目录一、决策树原理1.1决策树简介1.2基本概念二、数学知识2.1信息熵2.2条件熵:2.3信息增益三、ID3决策树3.1特征选择3.2算法思路3.3算法不足四、C4.5决策树算法4.1处理连续特征4.2C4.5决策树特征选取4.3处理缺失值4.4过拟合问题五、决策树C4.5算法的不足决策树是一种特殊的树形结构,一般由节点和有向边组成。其中,节点表示特征、属性或者一个类。而有向边包含有判断条件
- 智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法神经网络人工智能
智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割文章目录智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割1.堆优化算法2.PCNN网络3.实验结果4.参考文献5.Matlab代码摘要:本文利用堆优化算法对脉冲耦合神经网络的参数进行优化,以信息熵作为适应度函数,提高其图像分割的性能。1.堆优化算法堆优化算法原理请参考:https://blog.csdn.net/u0118
- 数学建模-基于熵权法对Topsis模型的修正
啥都想学点的研究生
矩阵线性代数
topsis模型赋予权重有层次分析法,但层次分析法也有其弊端。层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)针对层次分析法主观性太强的弊端,我们可以采用熵权法给topsis评价模型的各个指标赋权。如何度量信息量的大小,以小明和小王的例子为例:建立信息量I(x)和P(x)之间的关系:信息熵的定义:信息熵越大,信息量是越大还是越小呢
- 决策树(decision tree)
a15957199647
机器学习数据
决策树就是像树结构一样的分类下去,最后来预测输入样本的属于那类标签。本文是本人的学习笔记,所以有些地方也不是很清楚。大概流程就是1.查看子类是否属于同一个类2.如果是,返回类标签,如果不是,找到最佳的分类子集的特征3.划分数据集4.创建分支节点5.对每一个节点重复上述步骤6.返回树首先我们要像一个办法,怎么来确定最佳的分类特征就是为什么要这么划分子集。一般有三种方法:1.Gini不纯度2.信息熵3
- 蓝桥杯:01串的熵讲解(C++)
DaveVV
蓝桥杯c++蓝桥杯c++c语言算法数据结构
01串的熵本题来自于:2023年十四届省赛大学B组真题(共10道题)主要考察:暴力。代码放在下面,代码中重要的细节全都写了注释,非常清晰明了:#includeusingnamespacestd;intmain(){//请在此输入您的代码intn=23333333;//01串的长度doubletarget=11625907.5798;//信息熵的目标值for(inti=0;i(i)/n;//强转,让
- 机器学习3----决策树
pyniu
机器学习机器学习决策树人工智能
这是前期准备importnumpyasnpimportpandasaspdimportmatplotlib.pyplotasplt#ID3算法#每个特征的信息熵#target:账号是否真实,共2种情况#yes7个p=0.7#no3个p=0.3info_D=-(0.7*np.log2(0.7)+0.3*np.log2(0.3))info_D#日志密度L#日志密度3种结果#s3个0.31yes,2no
- [机器学习]决策树
LBENULL
决策树决策树学习采用的是自顶向下的递归方法,其基本思想是以信息熵为度量构造一颗熵值下降最快的树,到叶子节点处,熵值为0具有非常好的可解释性、分类速度快的优点,是一种有监督学习最早提及决策树思想的是Quinlan在1986年提出的ID3算法和1993年提出的C4.5算法,以及Breiman等人在1984年提出的CART算法工作原理一般的,一颗决策树包含一个根结点、若干个内部节点和若干个叶节点构造构造
- Python实现熵权法:客观求指标数据的权重
乌漆帅黑
python开发语言算法
介绍:熵权法(EntropyWeightMethod)是一种常用的多指标权重确定方法,用于评价指标之间的重要程度。它基于信息熵理论,通过计算指标数据的熵值和权重,实现客观、科学地确定指标权重,以辅助决策分析和多指标优化问题的解决。本文将介绍熵权法的基本原理,并提供Python编程语言的实现过程及示例代码,帮助理解和应用熵权法。目录1.数据准备2.计算指标熵值3.计算指标权重4.示例应用5.完整代码
- 100天搞定机器学习|Day55 最大熵模型
统计学家
1、熵的定义熵最早是一个物理学概念,由克劳修斯于1854年提出,它是描述事物无序性的参数,跟热力学第二定律的宏观方向性有关:在不加外力的情况下,总是往混乱状态改变。熵增是宇宙的基本定律,自然的有序状态会自发的逐步变为混沌状态。1948年,香农将熵的概念引申到信道通信的过程中,从而开创了”信息论“这门学科。香农用“信息熵”来描述随机变量的不确定程度,也即信息量的数学期望。关于信息熵、条件熵、联合熵、
- 机器学习:分类决策树(Python)
捕捉一只Diu
python机器学习决策树笔记
一、各种熵的计算entropy_utils.pyimportnumpyasnp#数值计算importmath#标量数据的计算classEntropyUtils:"""决策树中各种熵的计算,包括信息熵、信息增益、信息增益率、基尼指数。统一要求:按照信息增益最大、信息增益率最大、基尼指数增益最大"""@staticmethoddef_set_sample_weight(sample_weight,n_
- 新中特复习笔记二——章节整理上(上海交通大学)
懒总不想学习想睡觉
研狗--学习笔记笔记学习
前言本文根据复习ppt整理,猜测考点与题型均为老师的个人猜测,不做保证。感觉很多知识点重在理解,大家有空可以把对应的前后文看看!祝大家身体健康,考试顺利!!ps:本文是博主复初愈下整理的,脑子感觉不太好,可能有很多遗漏或者错误的地方,欢迎大家指出,随时更正!pps:上课视频过长且信息熵感觉有点低,这次就不分享了哈以及感谢大家的厚爱,i人非常感动也非常惶恐题目类型:单选,10个,20分多选,10个,
- 新中特复习笔记三——章节整理下(上海交通大学)
懒总不想学习想睡觉
研狗--学习笔记笔记学习
前言本文根据复习ppt整理,猜测考点与题型均为老师的个人猜测,不做保证。感觉很多知识点重在理解,大家有空可以把对应的前后文看看!祝大家身体健康,考试顺利!!ps:本文是博主复初愈下整理的,脑子感觉不太好,可能有很多遗漏或者错误的地方,欢迎大家指出,随时更正!pps:上课视频过长且信息熵感觉有点低,这次就不分享了哈以及感谢大家的厚爱,i人非常感动也非常惶恐题目类型:单选,10个,20分多选,10个,
- 新中特复习笔记一——论述题(上海交通大学)
懒总不想学习想睡觉
研狗--学习笔记笔记学习
前言本文根据复习ppt整理,猜测考点与题型均为老师的个人猜测,不做保证。感觉很多知识点重在理解,大家有空可以把对应的前后文看看!祝大家身体健康,考试顺利!!ps:本文是博主复初愈下整理的,脑子感觉不太好,可能有很多遗漏或者错误的地方,欢迎大家指出,随时更正!pps:上课视频过长且信息熵感觉有点低,这次就不分享了哈以及感谢大家的厚爱,i人非常感动也非常惶恐题目类型:单选,10个,20分多选,10个,
- 熵:信息熵、交叉熵、相对熵
Reore
信息熵信息熵H(X)可以看做,对X中的样本进行编码所需要的编码长度的期望值。交叉熵交叉熵可以理解为,现在有两个分布,真实分布p和非真实分布q,我们的样本来自真实分布p。按照真实分布p来编码样本所需的编码长度的期望为,这就是上面说的信息熵H(p)按照不真实分布q来编码样本所需的编码长度的期望为,这就是所谓的交叉熵H(p,q)相对熵这里引申出KL散度D(p||q)=H(p,q)-H(p)=,也叫做相对
- CDA二级建模分析师考试记录
啾啾二一
文by亲爱的雪莉考试方式是机考,单选+多选+实操题。选择题是用考场的电脑。实操题是考官现场用U盘把资料数据拷贝到你的电脑,2个小时后将数据结果和代码打包再拷贝到考官的U盘(这波操作好low)。选择题主要就是备考手册里的内容,多选题必须全部选对才得分,漏选不得分。题目来说有点翻来覆去,比如计算信息熵,一口气考了四道题,每个1分。其实考试更多是考内容理解,计算同类型考这么多没啥意义。虽说不公布真题,官
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name