Kafka参数调优

背景

kafka现在是一个很流行的消息中间件,在个大架构中扮演者重要的角色,而在使用Kafka的客户端编写代码与服务器交互的时候,是需要对客户端设置很多的参数的。眼花缭乱,刚接触kafka的朋友对这些参数并不是很了解,接下来我们就针对这些参数
进行一些讨论.

1. 一段Kafka生产端的示例代码

Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092"); 
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("buffer.memory", 67108864); 
props.put("batch.size", 131072); 
props.put("linger.ms", 100); 
props.put("min.insync.replicas", "2");
props.put("max.request.size", 10485760); 
props.put("acks", "1"); 
props.put("retries", 10); 
props.put("retry.backoff.ms", 500);
props.put("acks", "all");

KafkaProducer<String, String> producer = new KafkaProducer<String, String>(props);

2. 内存缓冲的大小

首先我们看看“buffer.memory”这个参数是什么意思?
Kafka的客户端发送数据到服务器,一般都是要经过缓冲的,也就是说,你通过KafkaProducer发送出去的消息都是先进入到客户端本地的内存缓冲里,然后把很多消息收集成一个一个的Batch,再发送到Broker上去的。
Kafka参数调优_第1张图片
所以这个“buffer.memory”的本质就是用来约束KafkaProducer能够使用的内存缓冲的大小的,他的默认值是32MB。

那么既然了解了这个含义,大家想一下,在生产项目里,这个参数应该怎么来设置呢?
你可以先想一下,如果这个内存缓冲设置的过小的话,可能会导致一个什么问题?
首先要明确一点,那就是在内存缓冲里大量的消息会缓冲在里面,形成一个一个的Batch,每个Batch里包含多条消息。
然后KafkaProducer有一个Sender线程会把多个Batch打包成一个Request发送到Kafka服务器上去。
那么如果要是内存设置的太小,可能导致一个问题:消息快速的写入内存缓冲里面,但是Sender线程来不及把Request发送到Kafka服务器。
这样是不是会造成内存缓冲很快就被写满?一旦被写满,就会阻塞用户线程,不让继续往Kafka写消息了。
所以对于“buffer.memory”这个参数应该结合自己的实际情况来进行压测,你需要测算一下在生产环境,你的用户线程会以每秒多少消息的频率来写入内存缓冲。
比如说每秒300条消息,那么你就需要压测一下,假设内存缓冲就32MB,每秒写300条消息到内存缓冲,是否会经常把内存缓冲写满?经过这样的压测,你可以调试出来一个合理的内存大小。

3.多少数据打包为一个Batch合适?

接着你需要思考第二个问题,就是你的“batch.size”应该如何设置?这个东西是决定了你的每个Batch要存放多少数据就可以发送出去了。
比如说你要是给一个Batch设置成是16KB的大小,那么里面凑够16KB的数据就可以发送了。
这个参数的默认值是16KB,一般可以尝试把这个参数调节大一些,然后利用自己的生产环境发消息的负载来测试一下。
比如说发送消息的频率就是每秒300条,那么如果比如“batch.size”调节到了32KB,或者64KB,是否可以提升发送消息的整体吞吐量。

因为理论上来说,提升batch的大小,可以允许更多的数据缓冲在里面,那么一次Request发送出去的数据量就更多了,这样吞吐量可能会有所提升。
但是这个东西也不能无限的大,过于大了之后,要是数据老是缓冲在Batch里迟迟不发送出去,那么岂不是你发送消息的延迟就会很高。

比如说,一条消息进入了Batch,但是要等待5秒钟Batch才凑满了64KB,才能发送出去。那这条消息的延迟就是5秒钟。
所以需要在这里按照生产环境的发消息的速率,调节不同的Batch大小自己测试一下最终出去的吞吐量以及消息的 延迟,设置一个最合理的参数。

4.要是一个Batch迟迟无法凑满怎么办?

要是一个Batch迟迟无法凑满,此时就需要引入另外一个参数了,linger.ms

他的含义就是说一个Batch被创建之后,最多过多久,不管这个Batch有没有写满,都必须发送出去了。

给大家举个例子,比如说batch.size是16kb,但是现在某个低峰时间段,发送消息很慢。

这就导致可能Batch被创建之后,陆陆续续有消息进来,但是迟迟无法凑够16KB,难道此时就一直等着吗?

当然不是,假设你现在设置linger.ms是50ms,那么只要这个Batch从创建开始到现在已经过了50ms了,哪怕他还没满16KB,也要发送他出去了。

所以linger.ms决定了你的消息一旦写入一个Batch,最多等待这么多时间,他一定会跟着Batch一起发送出去。

避免一个Batch迟迟凑不满,导致消息一直积压在内存里发送不出去的情况。这是一个很关键的参数

这个参数一般要非常慎重的来设置,要配合batch.size一起来设置。

举个例子,首先假设你的Batch是32KB,那么你得估算一下,正常情况下,一般多久会凑够一个Batch,比如正常来说可能20ms就会凑够一个Batch。

那么你的linger.ms就可以设置为25ms,也就是说,正常来说,大部分的Batch在20ms内都会凑满,但是你的linger.ms可以保证,哪怕遇到低峰时期,20ms凑不满一个Batch,还是会在25ms之后强制Batch发送出去。

如果要是你把linger.ms设置的太小了,比如说默认就是0ms,或者你设置个5ms,那可能导致你的Batch虽然设置了32KB,但是经常是还没凑够32KB的数据,5ms之后就直接强制Batch发送出去,这样也不太好其实,会导致你的Batch形同虚设,一直凑不满数据。

5.最小成功写入

min.insync.replicas指定replicas的最小数目(必须确认每一个repica的写数据都是成功的),如果这个数目没有达到,producer会产生异常。

6.最大请求大小

max.request.size这个参数决定了每次发送给Kafka服务器请求的最大大小,同时也会限制你一条消息的最大大小也不能超过这个参数设置的值,这个其实可以根据你自己的消息的大小来灵活的调整。

给大家举个例子,你们公司发送的消息都是那种大的报文消息,每条消息都是很多的数据,一条消息可能都要20KB。

此时你的batch.size是不是就需要调节大一些?比如设置个512KB?然后你的buffer.memory是不是要给的大一些?比如设置个128MB?

只有这样,才能让你在大消息的场景下,还能使用Batch打包多条消息的机制。但是此时“max.request.size”是不是也得同步增加?

因为可能你的一个请求是很大的,默认他是1MB,你是不是可以适当调大一些,比如调节到5MB?

7.重试机制

retries和retries.backoff.ms决定了重试机制,也就是如果一个请求失败了可以重试几次,每次重试的间隔是多少毫秒。

这个大家适当设置几次重试的机会,给一定的重试间隔即可,比如给100ms的重试间隔。

8.ack[三种模式]

  1. acks=0 意味着生产者能够通过网络吧消息发送出去,那么就认为消息已成功写入Kafka 一定会丢失一些数据
  2. acks=1 意味着首领在疏导消息并把它写到分区数据问津是会返回确认或者错误响应,还是可能会丢数据
  3. acks=all 意味着首领在返回确认或错误响应之前,会等待所有同步副本都收到消息。如果和min.insync.replicas参数结合起来,,就可以决定在返回确认前至少有多个副本能够收到消息。但是效率较低。可以通过一部模式和更大的批次来加快速度,但这样做会降低吞吐量

你可能感兴趣的:(kafka,kafka,生产者,参数,kafka参数,kafka,ack)