最近在做实验室的工作,要用到分类模型,老板一星期催20次,我也是无语了,上有对策下有政策,在下先找个猫猫狗狗的数据集练练手,快乐极了。
AlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的。也是在那年之后,更多的更深的神经网络被提出,比如优秀的vgg,GoogLeNet。 这对于传统的机器学习分类算法而言,已经相当的出色。
如下是其网络的结构,现在看来还是比较简单的。
这是一个AlexNet的网络结构图,其实并不复杂,很好的反应了AlexNet的结构:
1、一张原始图片被resize到(224,224,3);
2、使用步长为4x4,大小为11的卷积核对图像进行卷积,输出的特征层为96层,输出的shape为(55,55,96);
3、使用步长为2的最大池化层进行池化,此时输出的shape为(27,27,96)
4、使用步长为1x1,大小为5的卷积核对图像进行卷积,输出的特征层为256层,输出的shape为(27,27,256);
5、使用步长为2的最大池化层进行池化,此时输出的shape为(13,13,256);
6、使用步长为1x1,大小为3的卷积核对图像进行卷积,输出的特征层为384层,输出的shape为(13,13,384);
7、使用步长为1x1,大小为3的卷积核对图像进行卷积,输出的特征层为384层,输出的shape为(13,13,384);
8、使用步长为1x1,大小为3的卷积核对图像进行卷积,输出的特征层为256层,输出的shape为(13,13,256);
9、使用步长为2的最大池化层进行池化,此时输出的shape为(6,6,256);
10、两个全连接层,最后输出为1000类
最后输出的就是每个类的预测。
从上面的图也可以看出,其实最大的内存与计算消耗在于第一个全连接层的实现,它的参数有37M之多(这一点与VGG很类似,第一个全连接层参数巨多。),
在数据集处理之前,首先要下载猫狗数据集,地址如下。
链接:https://pan.baidu.com/s/1HBewIgKsFD8hh3ICOnnTwA
提取码:ktab
顺便直接下载我的源代码吧。
链接: https://pan.baidu.com/s/1l6mrSpbfNSOsbmw2FT0zYw
提取码: r799
这里的源代码包括了所有的代码部分,训练集需要自己下载,大概训练2个小时就可以进行预测了。
本次教程准备使用model.fit_generator来训练模型,在训练模型之前,需要将数据集的内容保存到一个TXT文件中,便于读取。
txt文件的保存格式如下:
文件名;种类
具体操作步骤如下:
1、将训练文件存到"./data/image/train/"目录下。
2、调用如下代码:
import os
photos = os.listdir("./data/image/train/")
# 该部分用于将
with open("data/dataset.txt","w") as f:
for photo in photos:
name = photo.split(".")[0]
if name=="cat":
f.write(photo + ";0\n")
elif name=="dog":
f.write(photo + ";1\n")
f.close()
该步就是按照AlexNet的结构创建AlexNet的模型。我试了原大小的模型,发现根本呢不收敛,可能是模型太复杂而且猫狗的特征太少了(也许是我打开方式不对)……
于是我就缩减了模型,每个卷积层的filter减半,全连接层减为1024.
from keras.models import Sequential
from keras.layers import Dense,Activation,Conv2D,MaxPooling2D,Flatten,Dropout,BatchNormalization
from keras.datasets import mnist
from keras.utils import np_utils
from keras.optimizers import Adam
def AlexNet(input_shape=(224,224,3),output_shape=2):
# AlexNet
model = Sequential()
# 使用步长为4x4,大小为11的卷积核对图像进行卷积,输出的特征层为96层,输出的shape为(55,55,96);
# 所建模型后输出为48特征层
model.add(
Conv2D(
filters=48,
kernel_size=(11,11),
strides=(4,4),
padding='valid',
input_shape=input_shape,
activation='relu'
)
)
model.add(BatchNormalization())
# 使用步长为2的最大池化层进行池化,此时输出的shape为(27,27,96)
model.add(
MaxPooling2D(
pool_size=(3,3),
strides=(2,2),
padding='valid'
)
)
# 使用步长为1x1,大小为5的卷积核对图像进行卷积,输出的特征层为256层,输出的shape为(27,27,256);
# 所建模型后输出为128特征层
model.add(
Conv2D(
filters=128,
kernel_size=(5,5),
strides=(1,1),
padding='same',
activation='relu'
)
)
model.add(BatchNormalization())
# 使用步长为2的最大池化层进行池化,此时输出的shape为(13,13,256);
model.add(
MaxPooling2D(
pool_size=(3,3),
strides=(2,2),
padding='valid'
)
)
# 使用步长为1x1,大小为3的卷积核对图像进行卷积,输出的特征层为384层,输出的shape为(13,13,384);
# 所建模型后输出为192特征层
model.add(
Conv2D(
filters=192,
kernel_size=(3,3),
strides=(1,1),
padding='same',
activation='relu'
)
)
# 使用步长为1x1,大小为3的卷积核对图像进行卷积,输出的特征层为384层,输出的shape为(13,13,384);
# 所建模型后输出为192特征层
model.add(
Conv2D(
filters=192,
kernel_size=(3,3),
strides=(1,1),
padding='same',
activation='relu'
)
)
# 使用步长为1x1,大小为3的卷积核对图像进行卷积,输出的特征层为256层,输出的shape为(13,13,256);
# 所建模型后输出为128特征层
model.add(
Conv2D(
filters=128,
kernel_size=(3,3),
strides=(1,1),
padding='same',
activation='relu'
)
)
# 使用步长为2的最大池化层进行池化,此时输出的shape为(6,6,256);
model.add(
MaxPooling2D(
pool_size=(3,3),
strides=(2,2),
padding='valid'
)
)
# 两个全连接层,最后输出为1000类,这里改为2类
# 缩减为1024
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(output_shape, activation='softmax'))
return model
训练的主函数主要包括如下部分:
1、读取训练用txt,并打乱,利用该txt进行训练集和测试集的划分。
2、建立AlexNet模型
3、设定模型保存的方式、学习率下降的方式、是否需要早停。
4、利用model.fit_generator训练模型。
具体代码如下:
if __name__ == "__main__":
# 模型保存的位置
log_dir = "./logs/"
# 打开数据集的txt
with open(r".\data\dataset.txt","r") as f:
lines = f.readlines()
# 打乱行,这个txt主要用于帮助读取数据来训练
# 打乱的数据更有利于训练
np.random.seed(10101)
np.random.shuffle(lines)
np.random.seed(None)
# 90%用于训练,10%用于估计。
num_val = int(len(lines)*0.1)
num_train = len(lines) - num_val
# 建立AlexNet模型
model = AlexNet()
# 保存的方式,3世代保存一次
checkpoint_period1 = ModelCheckpoint(
log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
monitor='acc',
save_weights_only=False,
save_best_only=True,
period=3
)
# 学习率下降的方式,acc三次不下降就下降学习率继续训练
reduce_lr = ReduceLROnPlateau(
monitor='acc',
factor=0.5,
patience=3,
verbose=1
)
# 是否需要早停,当val_loss一直不下降的时候意味着模型基本训练完毕,可以停止
early_stopping = EarlyStopping(
monitor='val_loss',
min_delta=0,
patience=10,
verbose=1
)
# 交叉熵
model.compile(loss = 'categorical_crossentropy',
optimizer = Adam(lr=1e-3),
metrics = ['accuracy'])
# 一次的训练集大小
batch_size = 64
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
# 开始训练
model.fit_generator(generate_arrays_from_file(lines[:num_train], batch_size),
steps_per_epoch=max(1, num_train//batch_size),
validation_data=generate_arrays_from_file(lines[num_train:], batch_size),
validation_steps=max(1, num_val//batch_size),
epochs=150,
initial_epoch=0,
callbacks=[checkpoint_period1, reduce_lr])
model.save_weights(log_dir+'last1.h5')
model.fit_generator需要用到python的生成器来滚动读取数据,具体方法看第二步。
Keras的数据生成器就是在一个while 1的无限循环中不断生成batch大小的数据集。
def generate_arrays_from_file(lines,batch_size):
# 获取总长度
n = len(lines)
i = 0
while 1:
X_train = []
Y_train = []
# 获取一个batch_size大小的数据
for b in range(batch_size):
if i==0:
np.random.shuffle(lines)
name = lines[i].split(';')[0]
# 从文件中读取图像
img = cv2.imread(r".\data\image\train" + '/' + name)
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
img = img/255
X_train.append(img)
Y_train.append(lines[i].split(';')[1])
# 读完一个周期后重新开始
i = (i+1) % n
# 处理图像
X_train = utils.resize_image(X_train,(224,224))
X_train = X_train.reshape(-1,224,224,3)
Y_train = np_utils.to_categorical(np.array(Y_train),num_classes= 2)
yield (X_train, Y_train)
在其中用到了一些处理函数,我存在了utils.py工具人文件中。
import matplotlib.image as mpimg
import numpy as np
import cv2
import tensorflow as tf
from tensorflow.python.ops import array_ops
def load_image(path):
# 读取图片,rgb
img = mpimg.imread(path)
# 将图片修剪成中心的正方形
short_edge = min(img.shape[:2])
yy = int((img.shape[0] - short_edge) / 2)
xx = int((img.shape[1] - short_edge) / 2)
crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
return crop_img
def resize_image(image, size):
with tf.name_scope('resize_image'):
images = []
for i in image:
i = cv2.resize(i, size)
images.append(i)
images = np.array(images)
return images
def print_answer(argmax):
with open("./data/model/index_word.txt","r",encoding='utf-8') as f:
synset = [l.split(";")[1][:-1] for l in f.readlines()]
print(synset[argmax])
return synset[argmax]
大家可以整体看看哈:
from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
from keras.utils import np_utils
from keras.optimizers import Adam
from model.AlexNet import AlexNet
import numpy as np
import utils
import cv2
from keras import backend as K
K.set_image_dim_ordering('tf')
def generate_arrays_from_file(lines,batch_size):
# 获取总长度
n = len(lines)
i = 0
while 1:
X_train = []
Y_train = []
# 获取一个batch_size大小的数据
for b in range(batch_size):
if i==0:
np.random.shuffle(lines)
name = lines[i].split(';')[0]
# 从文件中读取图像
img = cv2.imread(r".\data\image\train" + '/' + name)
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
img = img/255
X_train.append(img)
Y_train.append(lines[i].split(';')[1])
# 读完一个周期后重新开始
i = (i+1) % n
# 处理图像
X_train = utils.resize_image(X_train,(224,224))
X_train = X_train.reshape(-1,224,224,3)
Y_train = np_utils.to_categorical(np.array(Y_train),num_classes= 2)
yield (X_train, Y_train)
if __name__ == "__main__":
# 模型保存的位置
log_dir = "./logs/"
# 打开数据集的txt
with open(r".\data\dataset.txt","r") as f:
lines = f.readlines()
# 打乱行,这个txt主要用于帮助读取数据来训练
# 打乱的数据更有利于训练
np.random.seed(10101)
np.random.shuffle(lines)
np.random.seed(None)
# 90%用于训练,10%用于估计。
num_val = int(len(lines)*0.1)
num_train = len(lines) - num_val
# 建立AlexNet模型
model = AlexNet()
# 保存的方式,3世代保存一次
checkpoint_period1 = ModelCheckpoint(
log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
monitor='acc',
save_weights_only=False,
save_best_only=True,
period=3
)
# 学习率下降的方式,acc三次不下降就下降学习率继续训练
reduce_lr = ReduceLROnPlateau(
monitor='acc',
factor=0.5,
patience=3,
verbose=1
)
# 是否需要早停,当val_loss一直不下降的时候意味着模型基本训练完毕,可以停止
early_stopping = EarlyStopping(
monitor='val_loss',
min_delta=0,
patience=10,
verbose=1
)
# 交叉熵
model.compile(loss = 'categorical_crossentropy',
optimizer = Adam(lr=1e-3),
metrics = ['accuracy'])
# 一次的训练集大小
batch_size = 64
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
# 开始训练
model.fit_generator(generate_arrays_from_file(lines[:num_train], batch_size),
steps_per_epoch=max(1, num_train//batch_size),
validation_data=generate_arrays_from_file(lines[num_train:], batch_size),
validation_steps=max(1, num_val//batch_size),
epochs=150,
initial_epoch=0,
callbacks=[checkpoint_period1, reduce_lr, early_stopping ])
model.save_weights(log_dir+'last1.h5')
在完成上述的一大堆内容的配置后就可以开始训练了,所有文件的构架如下:
……训练是真的慢
……
Epoch 36/50
175/175 [==============================] - 219s 1s/step - loss: 0.0124 - acc: 0.9962 - val_loss: 0.5256 - val_acc: 0.9034
Epoch 37/50
175/175 [==============================] - 178s 1s/step - loss: 0.0028 - acc: 0.9991 - val_loss: 0.7911 - val_acc: 0.9034
Epoch 38/50
175/175 [==============================] - 174s 992ms/step - loss: 0.0047 - acc: 0.9987 - val_loss: 0.6690 - val_acc: 0.8910
Epoch 39/50
175/175 [==============================] - 241s 1s/step - loss: 0.0044 - acc: 0.9986 - val_loss: 0.6518 - val_acc: 0.9001
Epoch 40/50
142/175 [=======================>......] - ETA: 1:07 - loss: 0.0074 - acc: 0.9976
差不多是这样,在测试集上有90的准确度呢!我们拿一个模型预测一下看看。
import numpy as np
import utils
import cv2
from keras import backend as K
from model.AlexNet import AlexNet
K.set_image_dim_ordering('tf')
if __name__ == "__main__":
model = AlexNet()
# 载入模型
model.load_weights("./logs/ep039-loss0.004-val_loss0.652.h5")
# 载入图片,并处理
img = cv2.imread("./Test.jpg")
img_RGB = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
img_nor = img_RGB/255
img_nor = np.expand_dims(img_nor,axis = 0)
img_resize = utils.resize_image(img_nor,(224,224))
# 预测~!
#utils.print_answer(np.argmax(model.predict(img)))
print(utils.print_answer(np.argmax(model.predict(img_resize))))
cv2.imshow("ooo",img)
cv2.waitKey(0)
预测结果为:
猫
猫