#!/usr/bin/env python3
'''独热编码的作用:如是0:10000000
如是1:01000000,类推
'''
import numpy as np
import keras
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation, Conv2D, MaxPooling2D, Flatten
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint
import skimage.io as io
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(-1, 28, 28, 1) # normalize
X_test = X_test.reshape(-1, 28, 28, 1) # normalize
X_train = X_train / 255
X_test = X_test / 255
y_train = np_utils.to_categorical(y_train, num_classes=10)
y_test = np_utils.to_categorical(y_test, num_classes=10)
model_checkpoint = ModelCheckpoint('lenet5_membrane.hdf5', monitor='loss',verbose=1, save_best_only=True)
model = Sequential()
model.add(Conv2D(input_shape=(28, 28, 1), kernel_size=(5, 5), filters=20, activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2), strides=2, padding='same'))
model.add(Conv2D(kernel_size=(5, 5), filters=50, activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2,2), strides=2, padding='same'))
model.add(Flatten())
model.add(Dense(500, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
print('Training')
model.fit(X_train, y_train, epochs=2, batch_size=32,callbacks=[model_checkpoint])
print('\nTesting')
model.load_weights('lenet5_membrane.hdf5')
loss, accuracy = model.evaluate(X_test, y_test)
print('\ntest loss: ', loss)
print('\ntest accuracy: ', accuracy)
def load_data(address):
im = io.imread(address)
image_list = []
for item in im:
row = []
for i in item:
row.append([i[0]])
image_list.append(row)
array = np.array(image_list)
array = array/255
image = np.expand_dims(array, axis=0)
return image
address_list = ['0.jpg','1.jpg','2.jpg','3.jpg','4.jpg','5.jpg','6.jpg','7.jpg','8.jpg','9.jpg']
for address in address_list:
image = load_data(address)
predictions = model.predict_classes(image)
print('图片预测结果:'+str(predictions[0]))