单例模式(Singleton Pattern)是指确保一个类在任何情况下都绝对只有一个实例,并 提供一个全局访问点。单例模式是创建型模式。单例模式在现实生活中应用也非常广泛。 例如,国家主席、公司 CEO、部门经理等。在 J2EE 标准中,ServletContext、 ServletContextConfig 等;在 Spring 框架应用中ApplicationContext;数据库的连接池也都是单例形式。
先来看单例模式的类结构图:
饿汉式单例是在类加载的时候就立即初始化,并且创建单例对象。绝对线程安全,在线 程还没出现以前就是实例化了,不可能存在访问安全问题。 优点:没有加任何的锁、执行效率比较高,在用户体验上来说,比懒汉式更好。 缺点:类加载的时候就初始化,不管用与不用都占着空间,浪费了内存,有可能占着茅 坑不拉屎。 Spring 中 IOC 容器 ApplicationContext 本身就是典型的饿汉式单例。接下来看一段代码:
//饿汉式单例
// 它是在类加载的时候就立即初始化,并且创建单例对象
//优点:没有加任何的锁、执行效率比较高,
//在用户体验上来说,比懒汉式更好
//缺点:类加载的时候就初始化,不管你用还是不用,我都占着空间
//浪费了内存,有可能占着茅坑不拉屎
//绝对线程安全,在线程还没出现以前就是实例化了,不可能存在访问安全问题
public class HungrySingleton {
//先静态、后动态
//先属性、后方法
//先上后下
private static final HungrySingleton hungrySingleton = new HungrySingleton();
private HungrySingleton(){}
public static HungrySingleton getInstance(){
return hungrySingleton;
}
}
还有另外一种写法,利用静态代码块的机制:
//饿汉式静态块单例
public class HungryStaticSingleton {
private static final HungryStaticSingleton hungrySingleton;
static {
hungrySingleton = new HungryStaticSingleton();
}
private HungryStaticSingleton(){}
public static HungryStaticSingleton getInstance(){
return hungrySingleton;
}
}
这两种写法都非常的简单,也非常好理解,饿汉式适用在单例对象较少的情况。下面我 们来看性能更优的写法。
懒汉式单例的特点是:被外部类调用的时候内部类才会加载,下面看懒汉式单例的简单 实现 LazySimpleSingleton:
//懒汉式单例
//在外部需要使用的时候才进行实例化
public class LazySimpleSingleton {
private LazySimpleSingleton(){}
//静态块,公共内存区域
private static LazySimpleSingleton lazy = null;
public synchronized static LazySimpleSingleton getInstance(){
if(lazy == null){
lazy = new LazySimpleSingleton();
}
return lazy;
}
}
然后写一个线程类 ExectorThread 类:
public class ExectorThread implements Runnable{
@Override
public void run() {
LazySimpleSingleton singleton = LazySimpleSingleton.getInstance();
// ThreadLocalSingleton singleton = ThreadLocalSingleton.getInstance();
System.out.println(Thread.currentThread().getName() + ":" + singleton);
}
}
客户端测试代码:
public class LazySimpleSingletonTest {
public static void main(String[] args) {
Thread t1 = new Thread(new ExectorThread());
Thread t2 = new Thread(new ExectorThread());
t1.start();
t2.start();
System.out.println("End");
}
}
运行结果:
一定几率出现创建两个不同结果的情况,意味着上面的单例存在线程安全隐患。现在我 们用调试运行再具体看一下,教给大家一个新技能,用线程模式调试,手动控制线程的 执行顺序来跟踪内存的变化状态。先给 ExectorThread 类打上断点
右键点击断点,切换为 Thread 模式,如下图:
然后,给 LazySimpleSingleton 类打上断点,同样标记为 Thread 模式:
切回到客户端测试代码,同样也打上断点,同时改为 Thread 模式,如下图:
开始 debug 之后,会看到 debug 控制台可以自由切换 Thread 的运行状态:
通过不断切换线程,并观测其内存状态,我们发现在线程环境下 LazySimpleSingleton 被实例化了两次。有时,我们得到的运行结果可能是相同的两个对象,实际上是被后面 执行的线程覆盖了,我们看到了一个假象,线程安全隐患依旧存在。那么,我们如何来 优化代码,使得懒汉式单例在线程环境下安全呢?来看下面的代码,给 getInstance()加 上 synchronized 关键字,是这个方法变成线程同步方法:
//懒汉式单例
//在外部需要使用的时候才进行实例化
public class LazySimpleSingleton {
private LazySimpleSingleton(){}
//静态块,公共内存区域
private static LazySimpleSingleton lazy = null;
public synchronized static LazySimpleSingleton getInstance(){
if(lazy == null){
lazy = new LazySimpleSingleton();
}
return lazy;
}
}
这时候,我们再来调试。当我们将其中一个线程执行并调用 getInstance()方法时,另一 个线程在调用 getInstance()方法,线程的状态由 RUNNING 变成了 MONITOR,出现阻 塞。直到第一个线程执行完,第二个线程才恢复 RUNNING 状态继续调用 getInstance() 方法。如下图所示:
完美的展现了 synchronized 监视锁的运行状态,线程安全的问题便解决了。但是,用 synchronized 加锁,在线程数量比较多情况下,如果 CPU 分配压力上升,会导致大批 量线程出现阻塞,从而导致程序运行性能大幅下降。那么,有没有一种更好的方式,既 兼顾线程安全又提升程序性能呢?答案是肯定的。我们来看双重检查锁的单例模式:
public class LazyDoubleCheckSingleton {
private volatile static LazyDoubleCheckSingleton lazy = null;
private LazyDoubleCheckSingleton(){}
public static LazyDoubleCheckSingleton getInstance(){
if(lazy == null){
synchronized (LazyDoubleCheckSingleton.class){
if(lazy == null){
lazy = new LazyDoubleCheckSingleton();
//1.分配内存给这个对象
//2.初始化对象
//3.设置lazy指向刚分配的内存地址
//4.初次访问对象
}
}
}
return lazy;
}
}
现在,我们来断点调试:
当第一个线程调用 getInstance()方法时,第二个线程也可以调用 getInstance()。当第一 个线程执行到 synchronized 时会上锁,第二个线程就会变成 MONITOR 状态,出现阻 塞。此时,阻塞并不是基于整个 LazySimpleSingleton 类的阻塞,而是在 getInstance() 方法内部阻塞,只要逻辑不是太复杂,对于调用者而言感知不到。 但是,用到 synchronized 关键字,总归是要上锁,对程序性能还是存在一定影响的。难 道就真的没有更好的方案吗?当然是有的。我们可以从类初始化角度来考虑,看下面的 代码,采用静态内部类的方式:
//懒汉式单例
//这种形式兼顾饿汉式的内存浪费,也兼顾synchronized性能问题
//完美地屏蔽了这两个缺点
//史上最牛B的单例模式的实现方式
public class LazyInnerClassSingleton {
//默认使用LazyInnerClassGeneral的时候,会先初始化内部类
//如果没使用的话,内部类是不加载的
private LazyInnerClassSingleton(){
if(LazyHolder.LAZY != null){
throw new RuntimeException("不允许创建多个实例");
}
}
//每一个关键字都不是多余的
//static 是为了使单例的空间共享
//保证这个方法不会被重写,重载
public static final LazyInnerClassSingleton getInstance(){
//在返回结果以前,一定会先加载内部类
return LazyHolder.LAZY;
}
//默认不加载
private static class LazyHolder{
private static final LazyInnerClassSingleton LAZY = new LazyInnerClassSingleton();
}
}
这种形式兼顾饿汉式的内存浪费,也兼顾 synchronized 性能问题。内部类一定是要在方 法调用之前初始化,巧妙地避免了线程安全问题。由于这种方式比较简单,我们就不带 大家一步一步调试了。
大家有没有发现,上面介绍的单例模式的构造方法除了加上 private 以外,没有做任何处 理。如果我们使用反射来调用其构造方法,然后,再调用 getInstance()方法,应该就会 两个不同的实例。现在来看一段测试代码,以 LazyInnerClassSingleton 为例:
public class LazyInnerClassSingletonTest {
public static void main(String[] args) {
try{
//很无聊的情况下,进行破坏
Class<?> clazz = LazyInnerClassSingleton.class;
//通过反射拿到私有的构造方法
Constructor c = clazz.getDeclaredConstructor(null);
//强制访问,强吻,不愿意也要吻
c.setAccessible(true);
//暴力初始化
Object o1 = c.newInstance();
//调用了两次构造方法,相当于new了两次
//犯了原则性问题,
Object o2 = c.newInstance();
System.out.println(o1 == o2);
// Object o2 = c.newInstance();
}catch (Exception e){
e.printStackTrace();
}
}
}
运行结果如下:
显然,是创建了两个不同的实例。现在,我们在其构造方法中做一些限制,一旦出现多 次重复创建,则直接抛出异常。来看优化后的代码:
//懒汉式单例
//这种形式兼顾饿汉式的内存浪费,也兼顾synchronized性能问题
//完美地屏蔽了这两个缺点
//史上最牛B的单例模式的实现方式
public class LazyInnerClassSingleton {
//默认使用LazyInnerClassGeneral的时候,会先初始化内部类
//如果没使用的话,内部类是不加载的
private LazyInnerClassSingleton(){
if(LazyHolder.LAZY != null){
throw new RuntimeException("不允许创建多个实例");
}
}
//每一个关键字都不是多余的
//static 是为了使单例的空间共享
//保证这个方法不会被重写,重载
public static final LazyInnerClassSingleton getInstance(){
//在返回结果以前,一定会先加载内部类
return LazyHolder.LAZY;
}
//默认不加载
private static class LazyHolder{
private static final LazyInnerClassSingleton LAZY = new LazyInnerClassSingleton();
}
}
再运行测试代码,会得到以下结果:
至此,史上最牛 B 的单例写法便大功告成。
当我们将一个单例对象创建好,有时候需要将对象序列化然后写入到磁盘,下次使用时 再从磁盘中读取到对象,反序列化转化为内存对象。反序列化后的对象会重新分配内存, 即重新创建。那如果序列化的目标的对象为单例对象,就违背了单例模式的初衷,相当 于破坏了单例,来看一段代码:
//反序列化时导致单例破坏
public class SeriableSingleton implements Serializable {
//序列化就是说把内存中的状态通过转换成字节码的形式
//从而转换一个IO流,写入到其他地方(可以是磁盘、网络IO)
//内存中状态给永久保存下来了
//反序列化
//讲已经持久化的字节码内容,转换为IO流
//通过IO流的读取,进而将读取的内容转换为Java对象
//在转换过程中会重新创建对象new
public final static SeriableSingleton INSTANCE = new SeriableSingleton();
private SeriableSingleton(){}
public static SeriableSingleton getInstance(){
return INSTANCE;
}
}
编写测试代码:
public class SeriableSingletonTest {
public static void main(String[] args) {
SeriableSingleton s1 = null;
SeriableSingleton s2 = SeriableSingleton.getInstance();
FileOutputStream fos = null;
try {
fos = new FileOutputStream("SeriableSingleton.obj");
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(s2);
oos.flush();
oos.close();
FileInputStream fis = new FileInputStream("SeriableSingleton.obj");
ObjectInputStream ois = new ObjectInputStream(fis);
s1 = (SeriableSingleton)ois.readObject();
ois.close();
System.out.println(s1);
System.out.println(s2);
System.out.println(s1 == s2);
} catch (Exception e) {
e.printStackTrace();
}
}
}
运行结果:
从 运行结果中,可以看出,反序列化后的对象和手动创建的对象是不一致的,实例化了两 次,违背了单例的设计初衷。那么,我们如何保证序列化的情况下也能够实现单例?其 实很简单,只需要增加 readResolve()方法即可。来看优化代码:
//反序列化时导致单例破坏
public class SeriableSingleton implements Serializable {
//序列化就是说把内存中的状态通过转换成字节码的形式
//从而转换一个IO流,写入到其他地方(可以是磁盘、网络IO)
//内存中状态给永久保存下来了
//反序列化
//讲已经持久化的字节码内容,转换为IO流
//通过IO流的读取,进而将读取的内容转换为Java对象
//在转换过程中会重新创建对象new
public final static SeriableSingleton INSTANCE = new SeriableSingleton();
private SeriableSingleton(){}
public static SeriableSingleton getInstance(){
return INSTANCE;
}
private Object readResolve(){
return INSTANCE;
}
}
再看运行结果:
大家一定会关心这是什么原因呢?为什么要这样写?看上去很神奇的样子,也让人有些 费 解 。 不 如 , 我 们 一 起 来 看 看 JDK 的 源 码 实 现 以 一 清 二 楚 了 。 我 们 进 入 ObjectInputStream 类的 readObject()方法,代码如下:
public final Object readObject()
throws IOException, ClassNotFoundException
{
if (enableOverride) {
return readObjectOverride();
}
// if nested read, passHandle contains handle of enclosing object
int outerHandle = passHandle;
try {
Object obj = readObject0(false);
handles.markDependency(outerHandle, passHandle);
ClassNotFoundException ex = handles.lookupException(passHandle);
if (ex != null) {
throw ex;
}
if (depth == 0) {
vlist.doCallbacks();
}
return obj;
} finally {
passHandle = outerHandle;
if (closed && depth == 0) {
clear();
}
}
}
我们发现在readObject中又调用了我们重写的readObject0()方法。进入readObject0() 方法,代码如下:
我们看到 TC_OBJECTD 中判断,调用了 ObjectInputStream 的 readOrdinaryObject() 方法,我们继续进入看源码:
private Object readOrdinaryObject(boolean unshared)
throws IOException
{
if (bin.readByte() != TC_OBJECT) {
throw new InternalError();
}
ObjectStreamClass desc = readClassDesc(false);
desc.checkDeserialize();
Class<?> cl = desc.forClass();
if (cl == String.class || cl == Class.class
|| cl == ObjectStreamClass.class) {
throw new InvalidClassException("invalid class descriptor");
}
Object obj;
try {
obj = desc.isInstantiable() ? desc.newInstance() : null;
} catch (Exception ex) {
throw (IOException) new InvalidClassException(
desc.forClass().getName(),
"unable to create instance").initCause(ex);
}
passHandle = handles.assign(unshared ? unsharedMarker : obj);
ClassNotFoundException resolveEx = desc.getResolveException();
if (resolveEx != null) {
handles.markException(passHandle, resolveEx);
}
if (desc.isExternalizable()) {
readExternalData((Externalizable) obj, desc);
} else {
readSerialData(obj, desc);
}
handles.finish(passHandle);
if (obj != null &&
handles.lookupException(passHandle) == null &&
desc.hasReadResolveMethod())
{
Object rep = desc.invokeReadResolve(obj);
if (unshared && rep.getClass().isArray()) {
rep = cloneArray(rep);
}
if (rep != obj) {
// Filter the replacement object
if (rep != null) {
if (rep.getClass().isArray()) {
filterCheck(rep.getClass(), Array.getLength(rep));
} else {
filterCheck(rep.getClass(), -1);
}
}
handles.setObject(passHandle, obj = rep);
}
}
return obj;
}
发现调用了 ObjectStreamClass 的 isInstantiable()方法,而 isInstantiable()里面的代码 如下:
/**
* Returns true if represented class is serializable/externalizable and can
* be instantiated by the serialization runtime--i.e., if it is
* externalizable and defines a public no-arg constructor, or if it is
* non-externalizable and its first non-serializable superclass defines an
* accessible no-arg constructor. Otherwise, returns false.
*/
boolean isInstantiable() {
requireInitialized();
return (cons != null);
}
代码非常简单,就是判断一下构造方法是否为空,构造方法不为空就返回 true。意味着只要有无参构造方法就会实例化。 这时候,其实还没有找到为什么加上 readResolve()方法就避免了单例被破坏的真正原因。我再回到 ObjectInputStream 的 readOrdinaryObject()方法继续往下看:
private Object readOrdinaryObject(boolean unshared)
throws IOException
{
if (bin.readByte() != TC_OBJECT) {
throw new InternalError();
}
ObjectStreamClass desc = readClassDesc(false);
desc.checkDeserialize();
Class<?> cl = desc.forClass();
if (cl == String.class || cl == Class.class
|| cl == ObjectStreamClass.class) {
throw new InvalidClassException("invalid class descriptor");
}
Object obj;
try {
obj = desc.isInstantiable() ? desc.newInstance() : null;
} catch (Exception ex) {
throw (IOException) new InvalidClassException(
desc.forClass().getName(),
"unable to create instance").initCause(ex);
}
passHandle = handles.assign(unshared ? unsharedMarker : obj);
ClassNotFoundException resolveEx = desc.getResolveException();
if (resolveEx != null) {
handles.markException(passHandle, resolveEx);
}
if (desc.isExternalizable()) {
readExternalData((Externalizable) obj, desc);
} else {
readSerialData(obj, desc);
}
handles.finish(passHandle);
if (obj != null &&
handles.lookupException(passHandle) == null &&
desc.hasReadResolveMethod())
{
Object rep = desc.invokeReadResolve(obj);
if (unshared && rep.getClass().isArray()) {
rep = cloneArray(rep);
}
if (rep != obj) {
// Filter the replacement object
if (rep != null) {
if (rep.getClass().isArray()) {
filterCheck(rep.getClass(), Array.getLength(rep));
} else {
filterCheck(rep.getClass(), -1);
}
}
handles.setObject(passHandle, obj = rep);
}
}
return obj;
}
判断无参构造方法是否存在之后,又调用了 hasReadResolveMethod()方法,来看代码:
/**
* Returns true if represented class is serializable or externalizable and
* defines a conformant readResolve method. Otherwise, returns false.
*/
boolean hasReadResolveMethod() {
requireInitialized();
return (readResolveMethod != null);
}
逻辑非常简单,就是判断 readResolveMethod 是否为空,不为空就返回 true。那么 readResolveMethod 是在哪里赋值的呢?通过全局查找找到了赋值代码在私有方法 ObjectStreamClass()方法中给 readResolveMethod 进行赋值,来看代码:
readResolveMethod = getInheritableMethod(
cl, "readResolve", null, Object.class);
上面的逻辑其实就是通过反射找到一个无参的 readResolve()方法,并且保存下来。现在 再 回 到 ObjectInputStream 的 readOrdinaryObject() 方 法 继 续 往 下 看 , 如 果 readResolve()存在则调用 invokeReadResolve()方法,来看代码:
Object invokeReadResolve(Object obj)
throws IOException, UnsupportedOperationException
{
requireInitialized();
if (readResolveMethod != null) {
try {
return readResolveMethod.invoke(obj, (Object[]) null);
} catch (InvocationTargetException ex) {
Throwable th = ex.getTargetException();
if (th instanceof ObjectStreamException) {
throw (ObjectStreamException) th;
} else {
throwMiscException(th);
throw new InternalError(th); // never reached
}
} catch (IllegalAccessException ex) {
// should not occur, as access checks have been suppressed
throw new InternalError(ex);
}
} else {
throw new UnsupportedOperationException();
}
}
我们可以看到在 invokeReadResolve()方法中用反射调用了 readResolveMethod 方法。 通过 JDK 源码分析我们可以看出,虽然,增加 readResolve()方法返回实例,解决了单 例被破坏的问题。但是,我们通过分析源码以及调试,我们可以看到实际上实例化了两 次,只不过新创建的对象没有被返回而已。那如果,创建对象的动作发生频率增大,就 意味着内存分配开销也就随之增大,难道真的就没办法从根本上解决问题吗?下面我们 来注册式单例也许能帮助到你。
注册式单例又称为登记式单例,就是将每一个实例都登记到某一个地方,使用唯一的标 识获取实例。注册式单例有两种写法:一种为容器缓存,一种为枚举登记。先来看枚举 式单例的写法,来看代码,创建 EnumSingleton 类:
//常量中去使用,常量不就是用来大家都能够共用吗?
//通常在通用API中使用
public enum EnumSingleton {
INSTANCE;
private Object data;
public Object getData() {
return data;
}
public void setData(Object data) {
this.data = data;
}
public static EnumSingleton getInstance(){
return INSTANCE;
}
}
来看测试代码:
public class EnumSingletonTest {
public static void main(String[] args) {
try {
EnumSingleton instance1 = null;
EnumSingleton instance2 = EnumSingleton.getInstance();
instance2.setData(new Object());
FileOutputStream fos = new FileOutputStream("EnumSingleton.obj");
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(instance2);
oos.flush();
oos.close();
FileInputStream fis = new FileInputStream("EnumSingleton.obj");
ObjectInputStream ois = new ObjectInputStream(fis);
instance1 = (EnumSingleton) ois.readObject();
ois.close();
System.out.println(instance1.getData());
System.out.println(instance2.getData());
System.out.println(instance1.getData() == instance2.getData());
} catch (Exception e) {
e.printStackTrace();
}
}
}
运行结果:
没有做任何处理,我们发现运行结果和我们预期的一样。那么枚举式单例如此神奇,它的神秘之处在哪里体现呢?下面我们通过分析源码来揭开它的神秘面纱。 下载一个非常好用的 Java 反编译工具 Jad, 解压后配置好环境变量(这里不做详细介绍),就可以使用命令行调用了。找到工程所 在的 class 目录,复制 EnumSingleton.class 所在的路径,如下图:
然后切回到命令行,切换到工程所在的 Class 目录,输入命令 jad 后面输入复制好的路 径,我们会在 Class 目录下会多一个 EnumSingleton.jad 文件。打开 EnumSingleton.jad 文件我们惊奇又巧妙地发现有如下代码:
原来,枚举式单例在静态代码块中就给 INSTANCE 进行了赋值,是饿汉式单例的实现。 至此,我们还可以试想,序列化我们能否破坏枚举式单例呢?我们不妨再来看一下 JDK 源码,还是回到 ObjectInputStream 的 readObject0()方法:
我们看到在 readObject0()中调用了 readEnum()方法,来看 readEnum()中代码实现:
/**
* Reads in and returns enum constant, or null if enum type is
* unresolvable. Sets passHandle to enum constant's assigned handle.
*/
private Enum<?> readEnum(boolean unshared) throws IOException {
if (bin.readByte() != TC_ENUM) {
throw new InternalError();
}
ObjectStreamClass desc = readClassDesc(false);
if (!desc.isEnum()) {
throw new InvalidClassException("non-enum class: " + desc);
}
int enumHandle = handles.assign(unshared ? unsharedMarker : null);
ClassNotFoundException resolveEx = desc.getResolveException();
if (resolveEx != null) {
handles.markException(enumHandle, resolveEx);
}
String name = readString(false);
Enum<?> result = null;
Class<?> cl = desc.forClass();
if (cl != null) {
try {
@SuppressWarnings("unchecked")
Enum<?> en = Enum.valueOf((Class)cl, name);
result = en;
} catch (IllegalArgumentException ex) {
throw (IOException) new InvalidObjectException(
"enum constant " + name + " does not exist in " +
cl).initCause(ex);
}
if (!unshared) {
handles.setObject(enumHandle, result);
}
}
handles.finish(enumHandle);
passHandle = enumHandle;
return result;
}
我们发现枚举类型其实通过类名和 Class 对象类找到一个唯一的枚举对象。因此,枚举对 象不可能被类加载器加载多次。那么反射是否能破坏枚举式单例呢?来看一段测试代码:
public static void main(String[] args) {
try {
Class clazz = EnumSingleton.class;
Constructor c = clazz.getDeclaredConstructor(String.class,int.class);
c.newInstance();
}catch (Exception e){
e.printStackTrace();
}
}
运行结果:
报的是 java.lang.NoSuchMethodException 异常,意思是没找到无参的构造方法。这 时候,我们打开 java.lang.Enum 的源码代码,查看它的构造方法,只有一个 protected的构造方法,代码如下:
/**
* Sole constructor. Programmers cannot invoke this constructor.
* It is for use by code emitted by the compiler in response to
* enum type declarations.
*
* @param name - The name of this enum constant, which is the identifier
* used to declare it.
* @param ordinal - The ordinal of this enumeration constant (its position
* in the enum declaration, where the initial constant is assigned
* an ordinal of zero).
*/
protected Enum(String name, int ordinal) {
this.name = name;
this.ordinal = ordinal;
}
那我们再来做一个这样的测试:
public static void main(String[] args) {
try {
Class clazz = EnumSingleton.class;
Constructor c = clazz.getDeclaredConstructor(String.class,int.class);
c.setAccessible(true);
EnumSingleton enumSingleton = (EnumSingleton)c.newInstance("Tom",666);
}catch (Exception e){
e.printStackTrace();
}
}
运行结果:
这时错误已经非常明显了,告诉我们 Cannot reflectively create enum objects,不能 用反射来创建枚举类型。还是习惯性地想来看看 JDK 源码,进入 Constructor 的 newInstance()方法:
@CallerSensitive
public T newInstance(Object ... initargs)
throws InstantiationException, IllegalAccessException,
IllegalArgumentException, InvocationTargetException
{
if (!override) {
if (!Reflection.quickCheckMemberAccess(clazz, modifiers)) {
Class<?> caller = Reflection.getCallerClass();
checkAccess(caller, clazz, null, modifiers);
}
}
if ((clazz.getModifiers() & Modifier.ENUM) != 0)
throw new IllegalArgumentException("Cannot reflectively create enum objects");
ConstructorAccessor ca = constructorAccessor; // read volatile
if (ca == null) {
ca = acquireConstructorAccessor();
}
@SuppressWarnings("unchecked")
T inst = (T) ca.newInstance(initargs);
return inst;
}
在 newInstance()方法中做了强制性的判断,如果修饰符是 Modifier.ENUM 枚举类型, 直接抛出异常。到这为止,我们是不是已经非常清晰明了呢?枚举式单例也是《Effective Java》书中推荐的一种单例实现写法。在 JDK 枚举的语法特殊性,以及反射也为枚举保 驾护航,让枚举式单例成为一种比较优雅的实现。 接下来看注册式单例还有另一种写法,容器缓存的写法,创建 ContainerSingleton 类:
public class ContainerSingletonTest {
public static void main(String[] args) {
try {
long start = System.currentTimeMillis();
ConcurrentExecutor.execute(new ConcurrentExecutor.RunHandler() {
public void handler() {
Object obj = ContainerSingleton.getInstance("com.gupaoedu.vip.pattern.singleton.test.Pojo");;
System.out.println(System.currentTimeMillis() + ": " + obj);
}
}, 10,6);
long end = System.currentTimeMillis();
System.out.println("总耗时:" + (end - start) + " ms.");
}catch (Exception e){
e.printStackTrace();
}
}
}
容器式写法适用于创建实例非常多的情况,便于管理。但是,是非线程安全的。到此, 注册式单例介绍完毕。我们还可以来看看 Spring 中的容器式单例的实现代码:
最后给大家赠送一个彩蛋,讲讲线程单例实现 ThreadLocal。ThreadLocal 不能保证其 创建的对象是全局唯一,但是能保证在单个线程中是唯一的,天生的线程安全。下面我 们来看代码:
public class ThreadLocalSingleton {
private static final ThreadLocal<ThreadLocalSingleton> threadLocalInstance =
new ThreadLocal<ThreadLocalSingleton>(){
@Override
protected ThreadLocalSingleton initialValue() {
return new ThreadLocalSingleton();
}
};
private ThreadLocalSingleton(){}
public static ThreadLocalSingleton getInstance(){
return threadLocalInstance.get();
}
}
写一下测试代码:
public class ThreadLocalSingletonTest {
public static void main(String[] args) {
System.out.println(ThreadLocalSingleton.getInstance());
System.out.println(ThreadLocalSingleton.getInstance());
System.out.println(ThreadLocalSingleton.getInstance());
System.out.println(ThreadLocalSingleton.getInstance());
System.out.println(ThreadLocalSingleton.getInstance());
Thread t1 = new Thread(new ExectorThread());
Thread t2 = new Thread(new ExectorThread());
t1.start();
t2.start();
System.out.println("End");
}
运行结果:
我们发现,在主线程 main 中无论调用多少次,获取到的实例都是同一个,都在两个子线 程中分别获取到了不同的实例。那么 ThreadLocal 是如果实现这样的效果的呢?我们知 道上面的单例模式为了达到线程安全的目的,给方法上锁,以时间换空间。ThreadLocal 将所有的对象全部放在 ThreadLocalMap 中,为每个线程都提供一个对象,实际上是以 空间换时间来实现线程间隔离的。
单例模式可以保证内存里只有一个实例,减少了内存开销;可以避免对资源的多重占用。 单例模式看起来非常简单,实现起来其实也非常简单。但是在面试中却是一个高频面试 题。希望小伙伴们通过本章的学习,对单例模式有非常深刻的掌握,在面试中彰显技术 深度,提升核心竞争力,给面试加分,顺利拿到 Offer。