SSD及其不同主网络实现的性能差异比较

SSD-Caffe(Official) – VGG16

System VOC2007 test mAP FPS (Titan X) Number of Boxes Input resolution
Faster R-CNN (VGG16) 73.2 7 ~6000 ~1000 x 600
YOLO (customized) 63.4 45 98 448 x 448
SSD300* (VGG16) 77.2 46 8732 300 x 300
SSD512* (VGG16) 79.8 19 24564 512 x 512

SSD-TensorFlow – VGG16|

Model Training data Testing data mAP FPS
SSD-300 VGG-based VOC07+12 trainval VOC07 test 0.778 -
SSD-300 VGG-based VOC07+12+COCO trainval VOC07 test 0.817 -
SSD-512 VGG-based VOC07+12+COCO trainval VOC07 test 0.837 -

SSD - Caffe - MobileNet

Model mAP FPS Remarks
MobileNet-SSD 72.7(VOC0712) Remains MS-COCO pretraining

Squeeze-SSD

Model mAP FPS Remarks
SqueezeDet Remains - -
SqueezeNet-SSD 0.643 100(GPU) -

你可能感兴趣的:(3D目标检测,2D目标检测,神经网络结构,神经网络)