python+神经网络实现时间序列预测

本次教程介绍的是,利用python调用scikit-learn库的神经网络模型,进行时间序列预测。

不同于传统的机器学习模型,不需要特征,只需要连续时间内的target,就可以预测未来时间内的target

这个问题被成为时间序列预测问题,传统的方法是利用ARIMA或者SPSS。但是我觉得ARIMA对开发者要求比较高,经常出现预测效果不好的问题。

SPSS不适合进行批量预测,这个方法对开发者要求不高,而且预测效果也还可以。

这里的背景是预测2000个shop未来6周的销售量。训练数据是2015-7-1至2016-10-30的流量(天池IJICAI)

数据下载地址 https://pan.baidu.com/s/1miz8CrA

github参考 https://github.com/wangtuntun/IJCAI_nnet

这里分几个部分进行:

1 利用spark统计每个shop每天的购买量(数据量太大,而且不会用python的datagrame的group操作)

2 对数据进行清洗,保证每个shop每天都有flow。(时间序列处理要求每天都得有)

3 构建神经网络模型

4 调用模型进行预测


首先第一步 利用spark统计每个shop每天的购买量(数据量太大,而且不会用python的datagrame的group操作)

/**
  * Created by wangtuntun on 17-3-4.
  * 实现的主要功能是计算出每个商家每天的流量:(shop_id,DS,flow)
  */

import org.apache.spark.sql.{DataFrame, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}

object clean {

  def main(args: Array[String]) {

    //设置环境
    val conf=new SparkConf().setAppName("tianchi").setMaster("local")
    val sc=new SparkContext(conf)
    val sqc=new SQLContext(sc)
    val user_pay_raw=sc.textFile("/home/wangtuntun/IJCAI/Data/user_pay.txt")
    val user_pay_split=user_pay_raw.map(_.split(","))
    val user_transform =user_pay_split.map{ x=>    //数据转换
      val userid=x(0)
      val shop_id=x(1)
      val ts=x(2)
      val ts_split=ts.split(" ")
      val year_month_day=ts_split(0).split("-")
      val year=year_month_day(0)
      val month=year_month_day(1)
      val day=year_month_day(2)
//      (shop_id,userid,year,month,day)
      (shop_id,userid,ts_split(0))
    }

    val df=sqc.createDataFrame(user_transform)  // 生成一个dataframe
    val df_name_colums=df.toDF("shop_id","userid","DS")  //给df的每个列取名字
    df_name_colums.registerTempTable("user_pay_table")     //注册临时表
    val sql="select shop_id ,count(userid),DS from user_pay_table group by shop_id,DS order by shop_id desc,DS"
    val rs =sqc.sql(sql)
    rs.foreach(x=>println(x))
//    user_transform.saveAsTextFile("/home/wangtuntun/test_file4.txt")
    val rs_rdd=rs.map( x => x(0) + ","+ x(2).toString + "," + x(1)  )         //rs转为rdd
    rs_rdd.coalesce(1,true).saveAsTextFile("/home/wangtuntun/ds_flow_raw_data.txt")
    sc.stop();

  }


}

第二步 对数据进行清洗,保证每个shop每天都有flow。(时间序列处理要求每天都得有)

# encoding=utf-8
'''
原始的id_date_flow数据是由dataframe.sql(groupby user_id)完成,不能保证所有用户的所有天数据都有,所以进行一次清洗和填充
'''

from datetime import timedelta
import datetime

start_time_str = "2015-07-01"
end_time_str = "2016-10-30"
start_time = datetime.datetime.strptime(start_time_str, '%Y-%m-%d')
end_time = datetime.datetime.strptime(end_time_str, '%Y-%m-%d')

flow_dict = {}
for shop_id in range(1, 2001):
    for day in range(0, 487):
        next_day = start_time + timedelta(days=day)
        # print next_day.date()
        flow_dict[(shop_id, next_day)] = 0

f = open("/home/wangtuntun/IJCAI/Data/id_date_flow", "r+")
raw_data = f.readlines()
f.close()
for ele in raw_data:
    ele = ele.split(",")
    shop_id = int(ele[0])
    date_str = ele[1]
    date = datetime.datetime.strptime(date_str, '%Y-%m-%d')
    flow = int(ele[2])
    flow_dict[(shop_id, date)] = flow

#一次清洗
for ele in flow_dict:
    # print ele,flow_dict[ele]
    shop_id = ele[0]
    date = ele[1]

    date1 = date + timedelta(days=30)
    date2 = date + timedelta(days=21)
    date3 = date + timedelta(days=14)
    date4 = date + timedelta(days=7)

    date5 = date - timedelta(days=30)
    date6 = date - timedelta(days=21)
    date7 = date - timedelta(days=14)
    date8 = date - timedelta(days=7)

    if flow_dict[ele] == 0:
        # 如果该shop改天的flow为0,则用未来三天的
        if end_time - date > timedelta(days=30):  # 如果不是截止日期的最后三天
            if flow_dict[(shop_id, date1)] != 0:
                flow_dict[ele] = flow_dict[(shop_id, date1)]
                continue

        elif end_time - date > timedelta(days=21):
            if flow_dict[(shop_id, date2)] != 0:
                flow_dict[ele] = flow_dict[(shop_id, date2)]
                continue
        elif end_time - date > timedelta(days=14):
            if flow_dict[(shop_id, date3)] != 0:
                flow_dict[ele] = flow_dict[(shop_id, date3)]
                continue
        elif end_time - date > timedelta(days=7):
            if flow_dict[(shop_id, date4)] != 0:
                flow_dict[ele] = flow_dict[(shop_id, date4)]
                continue
        else:
            if flow_dict[(shop_id,date5)] != 0:
                flow_dict[ele]=flow_dict[(shop_id,date5)]
            elif flow_dict[(shop_id,date6)] != 0:
                flow_dict[ele]=flow_dict[(shop_id,date6)]
            elif flow_dict[(shop_id,date7)] != 0:
                flow_dict[ele]=flow_dict[(shop_id,date7)]
            elif flow_dict[(shop_id,date8)] != 0:
                flow_dict[ele]=flow_dict[(shop_id,date8)]


#二次清洗
for ele in flow_dict:
    # print ele,flow_dict[ele]
    shop_id = ele[0]
    date = ele[1]
    # print flow_dict[(shop_id,date)]
    date1 = date + timedelta(days=1)
    date2 = date + timedelta(days=2)
    date3 = date + timedelta(days=3)

    date4 = date - timedelta(days=1)
    date5 = date - timedelta(days=2)
    date6 = date - timedelta(days=3)

    if flow_dict[ele] == 0:
        # 如果该shop改天的flow为0,则用未来三天的
        if end_time - date > timedelta(days=3):  # 如果不是截止日期的最后三天
            if flow_dict[(shop_id, date1)] != 0:
                flow_dict[ele] = flow_dict[(shop_id, date1)]
                continue
            elif flow_dict[(shop_id, date2)] != 0:
                flow_dict[ele] = flow_dict[(shop_id, date2)]
                continue
            elif flow_dict[(shop_id, date3)] != 0:
                flow_dict[ele] = flow_dict[(shop_id, date3)]
                continue
        else:
            if flow_dict[(shop_id, date4)] != 0:
                flow_dict[ele] = flow_dict[(shop_id, date4)]
                continue
            elif flow_dict[(shop_id, date5)] != 0:
                flow_dict[ele] = flow_dict[(shop_id, date5)]
                continue
            elif flow_dict[(shop_id, date6)] != 0:
                flow_dict[ele] = flow_dict[(shop_id, date6)]
                continue
        # 如果未来连续三天都没有,则就下一个商家未来三天的信息
        if shop_id != 2000:  # 如果shop_id=2000,则+1就超出范围。
            if flow_dict[(shop_id + 1, date1)] != 0:
                flow_dict[ele] = flow_dict[(shop_id + 1, date1)]
                continue
            elif flow_dict[(shop_id + 1, date2)] != 0:
                flow_dict[ele] = flow_dict[shop_id + 1, date2]
                continue
            elif flow_dict[(shop_id + 1, date3)] != 0:
                flow_dict[ele] = flow_dict[(shop_id + 1, date3)]
                continue
        else:
            if flow_dict[(shop_id - 1, date1)] != 0:
                flow_dict[ele] = flow_dict[(shop_id - 1, date1)]
                continue
            elif flow_dict[(shop_id - 1, date2)] != 0:
                flow_dict[ele] = flow_dict[(shop_id - 1, date2)]
                continue
            elif flow_dict[(shop_id - 1, date3)] != 0:
                flow_dict[ele] = flow_dict[(shop_id - 1, date3)]
                continue



#三次清洗
for ele in flow_dict:
    # print ele,flow_dict[ele]
    shop_id = ele[0]
    date = ele[1]
    import random
    if flow_dict[ele] == 0:
        random_int=random.randint(5, 50)
        flow_dict[ele]=random_int


#将结果写入文件
f_write=open("/home/wangtuntun/IJCAI/Data/id_date_flow_cleaned","w+")
for ele in flow_dict:
    shop_id=str(ele[0])
    date=ele[1]
    date_str=str(date.date())
    flow=str(flow_dict[ele])
    f_write.write(shop_id)
    f_write.write(",")
    f_write.write(date_str)
    f_write.write(",")
    f_write.write(flow)
    f_write.write("\n")

f_write.close()

第三步 构建神经网络模型

import numpy as np
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import SGD
from sklearn.preprocessing import StandardScaler
import logging

logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)


class TimeSeriesNnet(object):
	def __init__(self, hidden_layers = [20, 15, 5], activation_functions = ['relu', 'relu', 'relu'], 
              optimizer = SGD(), loss = 'mean_absolute_error'):
		self.hidden_layers = hidden_layers
		self.activation_functions = activation_functions
		self.optimizer = optimizer
		self.loss = loss

		if len(self.hidden_layers) != len(self.activation_functions):
			raise Exception("hidden_layers size must match activation_functions size")

	def fit(self, timeseries, lag = 7, epochs = 10000, verbose = 0):
		self.timeseries = np.array(timeseries, dtype = "float64") # Apply log transformation por variance stationarity
		self.lag = lag
		self.n = len(timeseries)
		if self.lag >= self.n:
			raise ValueError("Lag is higher than length of the timeseries")
		self.X = np.zeros((self.n - self.lag, self.lag), dtype = "float64")
		self.y = np.log(self.timeseries[self.lag:])
		self.epochs = epochs
		self.scaler = StandardScaler()
		self.verbose = verbose

		logging.info("Building regressor matrix")
		# Building X matrix
		for i in range(0, self.n - lag):
			self.X[i, :] = self.timeseries[range(i, i + lag)]

		logging.info("Scaling data")
		self.scaler.fit(self.X)
		self.X = self.scaler.transform(self.X)

		logging.info("Checking network consistency")
		# Neural net architecture
		self.nn = Sequential()
		self.nn.add(Dense(self.hidden_layers[0], input_shape = (self.X.shape[1],)))
		self.nn.add(Activation(self.activation_functions[0]))

		for layer_size, activation_function in zip(self.hidden_layers[1:],self.activation_functions[1:]):
			self.nn.add(Dense(layer_size))
			self.nn.add(Activation(activation_function))

		# Add final node
		self.nn.add(Dense(1))
		self.nn.add(Activation('linear'))
		self.nn.compile(loss = self.loss, optimizer = self.optimizer)

		logging.info("Training neural net")
		# Train neural net
		self.nn.fit(self.X, self.y, nb_epoch = self.epochs, verbose = self.verbose)

	def predict_ahead(self, n_ahead = 1):
		# Store predictions and predict iteratively
		self.predictions = np.zeros(n_ahead)

		for i in range(n_ahead):
			self.current_x = self.timeseries[-self.lag:]
			self.current_x = self.current_x.reshape((1, self.lag))
			self.current_x = self.scaler.transform(self.current_x)
			self.next_pred = self.nn.predict(self.current_x)
			self.predictions[i] = np.exp(self.next_pred[0, 0])
			self.timeseries = np.concatenate((self.timeseries, np.exp(self.next_pred[0,:])), axis = 0)

		return self.predictions

最后一步 进行预测

#encoding=utf-8
from nnet_ts import *
import matplotlib.pyplot as plt
import datetime
from datetime import timedelta


start_time_str = "2015-07-01"
end_time_str = "2016-10-30"
start_time = datetime.datetime.strptime(start_time_str, '%Y-%m-%d')
end_time = datetime.datetime.strptime(end_time_str, '%Y-%m-%d')

#清洗数据
def clean_data(data_path):
    #已经在clean_data.py文件中完成,并已经存入文件id_date_flow_cleaned
    pass

#传入shop_id返回所有天的flow(天数连续且完整)
def get_shop_flows(shop_id,flow_dict):
    return_list = []
    for day in range(0, 488):  # 训练集一共有488天
        next_day = start_time + timedelta(days=day)
        # print(shop_id,next_day.date(),flow_dict[(shop_id,next_day)])
        return_list.append(flow_dict[(shop_id, next_day)])
    return return_list

#将浮点list转换为一个int型的字符串
def float_list2str(float_list):
    list_int = []
    for ele in float_list:
        ele = str(int(ele))
        list_int.append(ele)

    return ",".join(list_int)

#生成模型并预测接下来42天的flow
def predict_flow(time_series):
    neural_net = TimeSeriesNnet(hidden_layers=[20, 15, 5],activation_functions=['sigmoid', 'sigmoid', 'sigmoid'])  # 隐藏层每层的神经元格式以及激活函数
    neural_net.fit(time_series, lag=40, epochs=10000)  # epochs代表迭代次数
    predictions=neural_net.predict_ahead(n_ahead = 42)#预测接下来30天的值,将结果以ndarray的格式返回
    pre_loss=neural_net.loss#返回的是损失函数类型,不是误差。估计要自己定义计算误差的函数。
    return neural_net,predictions,pre_loss

#图形化显示结果
def show_predicted_flow(neural_net,time_series):
    plt.plot(range(len(neural_net.timeseries)), neural_net.timeseries, '-r', label='Predictions', linewidth=1)
    plt.plot(range(len(time_series)), time_series, '-g',  label='Original series')
    plt.title("Box & Jenkins AirPassenger data")
    plt.xlabel("Observation ordered index")
    plt.ylabel("No. of passengers")
    plt.legend()
    plt.show()

if __name__ == "__main__":
    # time_series = list(np.array(pd.read_csv("AirPassengers.csv")["x"]))#array list 都可以
    # neural_net, predictions, pre_loss=predict_flow(time_series)
    # show_predicted_flow(neural_net,time_series)
    cleaned_data_path="/home/wangtuntun/IJCAI/Data/id_date_flow_cleaned"
    f_open = open(cleaned_data_path, "r+")
    raw_data = f_open.readlines()
    f_open.close()
    flow_dict = {}
    for ele in raw_data:
        ele = ele.split(",")
        shop_id = int(ele[0])
        time_str = ele[1]
        date = datetime.datetime.strptime(time_str, '%Y-%m-%d')
        flow = int(ele[2])
        flow_dict[(shop_id, date)] = flow
    result_path="/home/wangtuntun/IJCAI/Data/nnets_predicted_flow"
    f_write=open(result_path,"w+")
    # show_predicted_flow(neural_net,time_series)
    for i in range(1,2001):
        shop_flow_list = get_shop_flows(i, flow_dict)
        time_series = shop_flow_list
        neural_net, predictions, pre_loss = predict_flow(time_series)
        predictions_str=float_list2str(predictions)
        f_write.write(str(i))
        f_write.write(",")
        f_write.write(predictions_str)
        f_write.write("\n")
    f_write.close()



你可能感兴趣的:(神经网络,数据挖掘)