flume学习(六):使用hive来分析flume收集的日志数据

前面已经讲过如何将log4j的日志输出到指定的hdfs目录,我们前面的指定目录为/flume/events。

如果想用hive来分析采集来的日志,我们可以将/flume/events下面的日志数据都load到hive中的表当中去。


如果了解hive的load data原理的话,还有一种更简便的方式,可以省去load data这一步,就是直接将sink1.hdfs.path指定为hive表的目录。

下面我将详细描述具体的操作步骤。

我们还是从需求驱动来讲解,前面我们采集的数据,都是接口的访问日志数据,数据格式是JSON格式如下:

{"requestTime":1405651379758,"requestParams":{"timestamp":1405651377211,"phone":"02038824941","cardName":"测试商家名称","provinceCode":"440000","cityCode":"440106"},"requestUrl":"/reporter-api/reporter/reporter12/init.do"}


现在有一个需求,我们要统计接口的总调用量。

我第一想法就是,hive中建一张表:test             然后将hdfs.path指定为tier1.sinks.sink1.hdfs.path=hdfs://master68:8020/user/hive/warehouse/besttone.db/test

然后select  count(*) from test;   完事。

这个方案简单,粗暴,先这么干着。于是会遇到一个问题,我的日志数据时JSON格式的,需要hive来序列化和反序列化JSON格式的数据到test表的具体字段当中去。

这有点糟糕,因为hive本身没有提供JSON的SERDE,但是有提供函数来解析JSON字符串,

第一个是(UDF):

 get_json_object(string json_string,string path) 从给定路径上的JSON字符串中抽取出JSON对象,并返回这个对象的JSON字符串形式,如果输入的JSON字符串是非法的,则返回NULL。

第二个是表生成函数(UDTF):json_tuple(string jsonstr,p1,p2,...,pn) 本函数可以接受多个标签名称,对输入的JSON字符串进行处理,这个和get_json_object这个UDF类似,不过更高效,其通过一次调用就可以获得多个键值,例:select b.* from test_json a lateral view json_tuple(a.id,'id','name') b as f1,f2;通过lateral view行转列。


最理想的方式就是能有一种JSON SERDE,只要我们LOAD完数据,就直接可以select * from test,而不是select get_json_object这种方式来获取,N个字段就要解析N次,效率太低了。

好在cloudrea wiki里提供了一个json serde类(这个类没有在发行的hive的jar包中),于是我把它搬来了,如下:

package com.besttone.hive.serde;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hive.serde.serdeConstants;
import org.apache.hadoop.hive.serde2.SerDe;
import org.apache.hadoop.hive.serde2.SerDeException;
import org.apache.hadoop.hive.serde2.SerDeStats;
import org.apache.hadoop.hive.serde2.objectinspector.ListObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.MapObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructField;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.typeinfo.ListTypeInfo;
import org.apache.hadoop.hive.serde2.typeinfo.MapTypeInfo;
import org.apache.hadoop.hive.serde2.typeinfo.StructTypeInfo;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoFactory;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.codehaus.jackson.map.ObjectMapper;

/**
 * This SerDe can be used for processing JSON data in Hive. It supports
 * arbitrary JSON data, and can handle all Hive types except for UNION. However,
 * the JSON data is expected to be a series of discrete records, rather than a
 * JSON array of objects.
 * 
 * The Hive table is expected to contain columns with names corresponding to
 * fields in the JSON data, but it is not necessary for every JSON field to have
 * a corresponding Hive column. Those JSON fields will be ignored during
 * queries.
 * 
 * Example:
 * 
 * { "a": 1, "b": [ "str1", "str2" ], "c": { "field1": "val1" } }
 * 
 * Could correspond to a table:
 * 
 * CREATE TABLE foo (a INT, b ARRAY, c STRUCT);
 * 
 * JSON objects can also interpreted as a Hive MAP type, so long as the keys and
 * values in the JSON object are all of the appropriate types. For example, in
 * the JSON above, another valid table declaraction would be:
 * 
 * CREATE TABLE foo (a INT, b ARRAY, c MAP);
 * 
 * Only STRING keys are supported for Hive MAPs.
 */
public class JSONSerDe implements SerDe {

	private StructTypeInfo rowTypeInfo;
	private ObjectInspector rowOI;
	private List colNames;
	private List row = new ArrayList();

	//遇到非JSON格式输入的时候的处理。
	private boolean ignoreInvalidInput;

	/**
	 * An initialization function used to gather information about the table.
	 * Typically, a SerDe implementation will be interested in the list of
	 * column names and their types. That information will be used to help
	 * perform actual serialization and deserialization of data.
	 */
	@Override
	public void initialize(Configuration conf, Properties tbl)
			throws SerDeException {
		// 遇到无法转换成JSON对象的字符串时,是否忽略,默认不忽略,抛出异常,设置为true将跳过异常。
		ignoreInvalidInput = Boolean.valueOf(tbl.getProperty(
				"input.invalid.ignore", "false"));

		// Get a list of the table's column names.

		String colNamesStr = tbl.getProperty(serdeConstants.LIST_COLUMNS);
		colNames = Arrays.asList(colNamesStr.split(","));

		// Get a list of TypeInfos for the columns. This list lines up with
		// the list of column names.
		String colTypesStr = tbl.getProperty(serdeConstants.LIST_COLUMN_TYPES);
		List colTypes = TypeInfoUtils
				.getTypeInfosFromTypeString(colTypesStr);

		rowTypeInfo = (StructTypeInfo) TypeInfoFactory.getStructTypeInfo(
				colNames, colTypes);
		rowOI = TypeInfoUtils
				.getStandardJavaObjectInspectorFromTypeInfo(rowTypeInfo);
	}

	/**
	 * This method does the work of deserializing a record into Java objects
	 * that Hive can work with via the ObjectInspector interface. For this
	 * SerDe, the blob that is passed in is a JSON string, and the Jackson JSON
	 * parser is being used to translate the string into Java objects.
	 * 
	 * The JSON deserialization works by taking the column names in the Hive
	 * table, and looking up those fields in the parsed JSON object. If the
	 * value of the field is not a primitive, the object is parsed further.
	 */
	@Override
	public Object deserialize(Writable blob) throws SerDeException {
		Map root = null;
		row.clear();
		try {
			ObjectMapper mapper = new ObjectMapper();
			// This is really a Map. For more information about
			// how
			// Jackson parses JSON in this example, see
			// http://wiki.fasterxml.com/JacksonDataBinding
			root = mapper.readValue(blob.toString(), Map.class);
		} catch (Exception e) {
			// 如果为true,不抛出异常,忽略该行数据
			if (!ignoreInvalidInput)
				throw new SerDeException(e);
			else {
				return null;
			}
			
		}

		// Lowercase the keys as expected by hive
		Map lowerRoot = new HashMap();
		for (Map.Entry entry : root.entrySet()) {
			lowerRoot.put(((String) entry.getKey()).toLowerCase(),
					entry.getValue());
		}
		root = lowerRoot;

		Object value = null;
		for (String fieldName : rowTypeInfo.getAllStructFieldNames()) {
			try {
				TypeInfo fieldTypeInfo = rowTypeInfo
						.getStructFieldTypeInfo(fieldName);
				value = parseField(root.get(fieldName), fieldTypeInfo);
			} catch (Exception e) {
				value = null;
			}
			row.add(value);
		}
		return row;
	}

	/**
	 * Parses a JSON object according to the Hive column's type.
	 * 
	 * @param field
	 *            - The JSON object to parse
	 * @param fieldTypeInfo
	 *            - Metadata about the Hive column
	 * @return - The parsed value of the field
	 */
	private Object parseField(Object field, TypeInfo fieldTypeInfo) {
		switch (fieldTypeInfo.getCategory()) {
		case PRIMITIVE:
			// Jackson will return the right thing in this case, so just return
			// the object
			if (field instanceof String) {
				field = field.toString().replaceAll("\n", "\\\\n");
			}
			return field;
		case LIST:
			return parseList(field, (ListTypeInfo) fieldTypeInfo);
		case MAP:
			return parseMap(field, (MapTypeInfo) fieldTypeInfo);
		case STRUCT:
			return parseStruct(field, (StructTypeInfo) fieldTypeInfo);
		case UNION:
			// Unsupported by JSON
		default:
			return null;
		}
	}

	/**
	 * Parses a JSON object and its fields. The Hive metadata is used to
	 * determine how to parse the object fields.
	 * 
	 * @param field
	 *            - The JSON object to parse
	 * @param fieldTypeInfo
	 *            - Metadata about the Hive column
	 * @return - A map representing the object and its fields
	 */
	private Object parseStruct(Object field, StructTypeInfo fieldTypeInfo) {
		Map map = (Map) field;
		ArrayList structTypes = fieldTypeInfo
				.getAllStructFieldTypeInfos();
		ArrayList structNames = fieldTypeInfo.getAllStructFieldNames();

		List structRow = new ArrayList(structTypes.size());
		for (int i = 0; i < structNames.size(); i++) {
			structRow.add(parseField(map.get(structNames.get(i)),
					structTypes.get(i)));
		}
		return structRow;
	}

	/**
	 * Parse a JSON list and its elements. This uses the Hive metadata for the
	 * list elements to determine how to parse the elements.
	 * 
	 * @param field
	 *            - The JSON list to parse
	 * @param fieldTypeInfo
	 *            - Metadata about the Hive column
	 * @return - A list of the parsed elements
	 */
	private Object parseList(Object field, ListTypeInfo fieldTypeInfo) {
		ArrayList list = (ArrayList) field;
		TypeInfo elemTypeInfo = fieldTypeInfo.getListElementTypeInfo();

		for (int i = 0; i < list.size(); i++) {
			list.set(i, parseField(list.get(i), elemTypeInfo));
		}

		return list.toArray();
	}

	/**
	 * Parse a JSON object as a map. This uses the Hive metadata for the map
	 * values to determine how to parse the values. The map is assumed to have a
	 * string for a key.
	 * 
	 * @param field
	 *            - The JSON list to parse
	 * @param fieldTypeInfo
	 *            - Metadata about the Hive column
	 * @return
	 */
	private Object parseMap(Object field, MapTypeInfo fieldTypeInfo) {
		Map map = (Map) field;
		TypeInfo valueTypeInfo = fieldTypeInfo.getMapValueTypeInfo();

		for (Map.Entry entry : map.entrySet()) {
			map.put(entry.getKey(), parseField(entry.getValue(), valueTypeInfo));
		}
		return map;
	}

	/**
	 * Return an ObjectInspector for the row of data
	 */
	@Override
	public ObjectInspector getObjectInspector() throws SerDeException {
		return rowOI;
	}

	/**
	 * Unimplemented
	 */
	@Override
	public SerDeStats getSerDeStats() {
		return null;
	}

	/**
	 * JSON is just a textual representation, so our serialized class is just
	 * Text.
	 */
	@Override
	public Class getSerializedClass() {
		return Text.class;
	}

	/**
	 * This method takes an object representing a row of data from Hive, and
	 * uses the ObjectInspector to get the data for each column and serialize
	 * it. This implementation deparses the row into an object that Jackson can
	 * easily serialize into a JSON blob.
	 */
	@Override
	public Writable serialize(Object obj, ObjectInspector oi)
			throws SerDeException {
		Object deparsedObj = deparseRow(obj, oi);
		ObjectMapper mapper = new ObjectMapper();
		try {
			// Let Jackson do the work of serializing the object
			return new Text(mapper.writeValueAsString(deparsedObj));
		} catch (Exception e) {
			throw new SerDeException(e);
		}
	}

	/**
	 * Deparse a Hive object into a Jackson-serializable object. This uses the
	 * ObjectInspector to extract the column data.
	 * 
	 * @param obj
	 *            - Hive object to deparse
	 * @param oi
	 *            - ObjectInspector for the object
	 * @return - A deparsed object
	 */
	private Object deparseObject(Object obj, ObjectInspector oi) {
		switch (oi.getCategory()) {
		case LIST:
			return deparseList(obj, (ListObjectInspector) oi);
		case MAP:
			return deparseMap(obj, (MapObjectInspector) oi);
		case PRIMITIVE:
			return deparsePrimitive(obj, (PrimitiveObjectInspector) oi);
		case STRUCT:
			return deparseStruct(obj, (StructObjectInspector) oi, false);
		case UNION:
			// Unsupported by JSON
		default:
			return null;
		}
	}

	/**
	 * Deparses a row of data. We have to treat this one differently from other
	 * structs, because the field names for the root object do not match the
	 * column names for the Hive table.
	 * 
	 * @param obj
	 *            - Object representing the top-level row
	 * @param structOI
	 *            - ObjectInspector for the row
	 * @return - A deparsed row of data
	 */
	private Object deparseRow(Object obj, ObjectInspector structOI) {
		return deparseStruct(obj, (StructObjectInspector) structOI, true);
	}

	/**
	 * Deparses struct data into a serializable JSON object.
	 * 
	 * @param obj
	 *            - Hive struct data
	 * @param structOI
	 *            - ObjectInspector for the struct
	 * @param isRow
	 *            - Whether or not this struct represents a top-level row
	 * @return - A deparsed struct
	 */
	private Object deparseStruct(Object obj, StructObjectInspector structOI,
			boolean isRow) {
		Map struct = new HashMap();
		List fields = structOI.getAllStructFieldRefs();
		for (int i = 0; i < fields.size(); i++) {
			StructField field = fields.get(i);
			// The top-level row object is treated slightly differently from
			// other
			// structs, because the field names for the row do not correctly
			// reflect
			// the Hive column names. For lower-level structs, we can get the
			// field
			// name from the associated StructField object.
			String fieldName = isRow ? colNames.get(i) : field.getFieldName();
			ObjectInspector fieldOI = field.getFieldObjectInspector();
			Object fieldObj = structOI.getStructFieldData(obj, field);
			struct.put(fieldName, deparseObject(fieldObj, fieldOI));
		}
		return struct;
	}

	/**
	 * Deparses a primitive type.
	 * 
	 * @param obj
	 *            - Hive object to deparse
	 * @param oi
	 *            - ObjectInspector for the object
	 * @return - A deparsed object
	 */
	private Object deparsePrimitive(Object obj, PrimitiveObjectInspector primOI) {
		return primOI.getPrimitiveJavaObject(obj);
	}

	private Object deparseMap(Object obj, MapObjectInspector mapOI) {
		Map map = new HashMap();
		ObjectInspector mapValOI = mapOI.getMapValueObjectInspector();
		Map fields = mapOI.getMap(obj);
		for (Map.Entry field : fields.entrySet()) {
			Object fieldName = field.getKey();
			Object fieldObj = field.getValue();
			map.put(fieldName, deparseObject(fieldObj, mapValOI));
		}
		return map;
	}

	/**
	 * Deparses a list and its elements.
	 * 
	 * @param obj
	 *            - Hive object to deparse
	 * @param oi
	 *            - ObjectInspector for the object
	 * @return - A deparsed object
	 */
	private Object deparseList(Object obj, ListObjectInspector listOI) {
		List list = new ArrayList();
		List field = listOI.getList(obj);
		ObjectInspector elemOI = listOI.getListElementObjectInspector();
		for (Object elem : field) {
			list.add(deparseObject(elem, elemOI));
		}
		return list;
	}
} 
  
我稍微修改了一点东西,多加了一个参数input.invalid.ignore,对应的变量为:

//遇到非JSON格式输入的时候的处理。
private boolean ignoreInvalidInput;


在deserialize方法中原来是如果传入的是非JSON格式字符串的话,直接抛出了SerDeException,我加了一个参数来控制它是否抛出异常,在initialize方法中初始化这个变量(默认为false):


// 遇到无法转换成JSON对象的字符串时,是否忽略,默认不忽略,抛出异常,设置为true将跳过异常。
ignoreInvalidInput = Boolean.valueOf(tbl.getProperty(
"input.invalid.ignore", "false"));


好的,现在将这个类打成JAR包: JSONSerDe.jar,放在hive_home的auxlib目录下(我的是/etc/hive/auxlib),然后修改hive-env.sh,添加HIVE_AUX_JARS_PATH=/etc/hive/auxlib/JSONSerDe.jar,这样每次运行hive客户端的时候都会将这个jar包添加到classpath,否则在设置SERDE的时候会报找不到类。

现在我们在HIVE中创建一张表用来存放日志数据:

create table test(
requestTime BIGINT,
requestParams STRUCT,	
requestUrl STRING)
 row format serde "com.besttone.hive.serde.JSONSerDe" 
 WITH SERDEPROPERTIES(
 "input.invalid.ignore"="true",
 "requestTime"="$.requestTime",
 "requestParams.timestamp"="$.requestParams.timestamp",
 "requestParams.phone"="$.requestParams.phone",
 "requestParams.cardName"="$.requestParams.cardName",
 "requestParams.provinceCode"="$.requestParams.provinceCode",
 "requestParams.cityCode"="$.requestParams.cityCode",
 "requestUrl"="$.requestUrl");

这个表结构就是按照日志格式设计的,还记得前面说过的日志数据如下:

{"requestTime":1405651379758,"requestParams":{"timestamp":1405651377211,"phone":"02038824941","cardName":"测试商家名称","provinceCode":"440000","cityCode":"440106"},"requestUrl":"/reporter-api/reporter/reporter12/init.do"}


我使用了一个STRUCT类型来保存requestParams的值,row format我们用的是自定义的json serde:com.besttone.hive.serde.JSONSerDe,SERDEPROPERTIES中,除了设置JSON对象的映射关系外,我还设置了一个自定义的参数:"input.invalid.ignore"="true",忽略掉所有非JSON格式的输入行。这里不是真正意义的忽略,只是非法行的每个输出字段都为NULL了,要在结果集上忽略,必须这样写:select * from test where requestUrl is not null;

OK表建好了,现在就差数据了,我们启动flumedemo的WriteLog,往hive表test目录下面输出一些日志数据,然后在进入hive客户端,select * from test;所以字段都正确的解析,大功告成。

flume.conf如下:

tier1.sources=source1
tier1.channels=channel1
tier1.sinks=sink1

tier1.sources.source1.type=avro
tier1.sources.source1.bind=0.0.0.0
tier1.sources.source1.port=44444
tier1.sources.source1.channels=channel1

tier1.sources.source1.interceptors=i1 i2
tier1.sources.source1.interceptors.i1.type=regex_filter
tier1.sources.source1.interceptors.i1.regex=\\{.*\\}
tier1.sources.source1.interceptors.i2.type=timestamp

tier1.channels.channel1.type=memory
tier1.channels.channel1.capacity=10000
tier1.channels.channel1.transactionCapacity=1000
tier1.channels.channel1.keep-alive=30

tier1.sinks.sink1.type=hdfs
tier1.sinks.sink1.channel=channel1
tier1.sinks.sink1.hdfs.path=hdfs://master68:8020/user/hive/warehouse/besttone.db/test
tier1.sinks.sink1.hdfs.fileType=DataStream
tier1.sinks.sink1.hdfs.writeFormat=Text
tier1.sinks.sink1.hdfs.rollInterval=0
tier1.sinks.sink1.hdfs.rollSize=10240
tier1.sinks.sink1.hdfs.rollCount=0
tier1.sinks.sink1.hdfs.idleTimeout=60

besttone.db是我在hive中创建的数据库,了解hive的应该理解没多大问题。


OK,到这篇文章为止,整个从LOG4J生产日志,到flume收集日志,再到用hive离线分析日志,一整套流水线都讲解完了。

你可能感兴趣的:(flume-ng,hive)