- 【稀疏三维重建】Flash3D:单张图像重建场景的GaussianSplatting
杀生丸学AI
计算机视觉人工智能大模型稀疏三维重建立体几何单目深度估计
项目主页:https://www.robots.ox.ac.uk/~vgg/research/flash3d/来源:牛津、澳大利亚国立文章目录摘要1.引言2.相关工作3.方法3.1背景:从单个图像中重建场景3.2单目前向的多个高斯4.实验4.14.2跨域新视角合成4.3域内新视图合成摘要 Flash3D,一种通用的单一图像场景重建。模型从一个单目深度估计的“基础”模型开始,扩展到一个完整的三维形
- 纹理贴图算法研究论文综述
点云SLAM
算法图形图像处理算法纹理贴图计算机图形学计算机视觉人工智能虚拟现实(VR)纹理贴图算法综述
纹理贴图(TextureMapping)是计算机图形学和计算机视觉中的核心技术,广泛应用于三维重建、游戏渲染、虚拟现实(VR)、增强现实(AR)等领域。对其算法的研究涵盖了纹理生成、映射、缝合、优化等多个方面。1.引言纹理贴图是指将二维图像纹理映射到三维几何表面上,以增强模型的视觉真实感。传统方法主要关注静态几何模型上的纹理生成与映射,而近年来,随着多视角图像重建、RGB-D扫描、神经渲染的发展,
- 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建(续)
格图素书
算法人工智能
目录3.4点云数据精简3.4.1数据精简的要求3.4.2经典精简算法分析3.5点云三维重建算法3.5.1曲面重建方式的分类3.5.2点云数据的三角剖分3.5.3Delaunay三角剖分算法3.5.4贪婪投影三角化算法3.5.5泊松曲面重建算法4特征保留优化的点云精简4.1引言4.2点云精简的思想4.3基于图信号的特征保留优化的点云精简算法4.3.2定义密度均匀性损失4.4点云精简实验结果及分析5隧
- NeRF-Pytorch:NeRF神经辐射场复现——Pytorch版全流程分析与测试【Ubuntu20.04】【2025最新版!!!】
那就举个栗子!
三维重建计算机视觉人工智能
一、引言在计算机视觉和计算机图形学的交叉领域中,视图合成(ViewSynthesis)一直是一个充满挑战的研究方向。传统的三维重建方法往往需要复杂的几何建模和纹理映射过程,而且在处理复杂光照和材质时效果有限。2020年,来自UCBerkeley的研究团队提出了NeuralRadianceFields(NeRF),这一革命性的方法彻底改变了我们对三维场景表示和渲染的理解。NeRF的核心思想是将三维场
- OpenCV 三维重建实战:从工业检测到自动驾驶,3 大场景代码全解析
从零开始学习人工智能
opencv自动驾驶数码相机
:工业零部件三维建模与检测案例背景:在汽车制造工厂,对于复杂形状的发动机零部件质量检测与逆向工程需求,需要高精度的三维模型。传统检测方法效率低且精度有限,而三维重建技术可快速获取零部件三维信息,实现高效检测与设计优化。技术实现:使用多个相机从不同角度拍摄零部件,利用calib3d模块进行相机标定,获取准确的相机内参和外参。通过特征点检测与匹配算法(如SIFT、ORB等)找到不同图像间的对应点,再用
- CVPR 2024 3D方向总汇包含(3DGS、三维重建、深度补全、深度估计、全景定位、表面重建和特征匹配等)
1、3D方向Rapid3DModelGenerationwithIntuitive3DInputInstantaneousPerceptionofMovingObjectsin3DNEAT:Distilling3DWireframesfromNeuralAttractionFields⭐codeSculptingHolistic3DRepresentationinContrastiveLangua
- OpenCV实现相机标定的棋盘格制作与应用
BIG-HO
本文还有配套的精品资源,点击获取简介:在计算机视觉领域,棋盘格标定板用于获取相机参数,实现图像校正和三维重建。OpenCV库提供了绘制棋盘格和相机标定的功能。本文将详细介绍如何使用OpenCV制作棋盘格标定板,包括设计、绘制、保存、相机标定过程和应用。通过实际案例,如畸变矫正、三维重建、AR应用和机器人导航,展示棋盘格标定板在视觉技术中的关键作用。1.棋盘格设计与绘制1.1棋盘格的基本概念与应用棋
- OpenCV双目视觉棋盘格标定、特征匹配及三维坐标计算
OpenCV双目视觉棋盘格标定、特征匹配及三维坐标计算【下载地址】OpenCV双目视觉棋盘格标定特征匹配及三维坐标计算OpenCV双目视觉棋盘格标定、特征匹配及三维坐标计算本资源库提供了基于OpenCV的双目视觉系统标定和三维重建基础教程,专注于利用棋盘格作为特征目标进行相机校准,特征点匹配以及随后的三维坐标计算项目地址:https://gitcode.com/open-source-toolki
- 产教融合3.0时代:数字影像产业园‘人才+产业+创新’生态闭环构建
cdsmjt
企业微信
产教融合3.0时代,数字影像产业园构建“人才+产业+创新”生态闭环,需要从以下几个关键环节入手:一、人才培养:以产业需求为导向校企深度合作:打破传统“单向输送”模式,构建双向互动机制。高校与企业共同制定人才培养方案,课程设置紧贴产业前沿技术和岗位需求。实战化教学:建设实训基地,引入真实项目,让学生在实践中掌握技能。例如,可以参照“雅职·海信人工智能医学影像三维重建生产性实训基地”模式,打造高仿真的
- 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建
格图素书
网络
目录前言国内外研究现状隧道监测研究现状表面重建研究现状2二维激光雷达三维扫描系统设计与实现2.1引言2.2系统设计2.2.1需求分析2.2.2方案设计2.3传感器方案选型2.3.1激光雷达测量技术介绍2.3.2激光雷达系统结构2.3.3激光雷达选型2.3.4IMU硬件选择2.42DLidar-IMU坐标系定义与变换2.4.1坐标系定义2.4.2激光雷达与IMU坐标变换2.5系统平台2.6系统扫描实
- TopNet:基于Transformer的高效点云几何压缩网络模型详解
清风AI
深度学习算法详解及代码复现计算机视觉算法深度学习人工智能计算机视觉神经网络transformer卷积神经网络python
一、研究背景与挑战随着激光雷达(LiDAR)技术的普及,点云数据在自动驾驶、三维重建等领域得到广泛应用。然而,点云数据的无序性、稀疏性给存储和传输带来巨大挑战。传统的点云几何压缩(PCGC)方法难以平衡压缩率与精度,而深度学习方法逐渐成为主流。现有方法主要分为两类:CNN-based方法:通过3D卷积提取局部特征,但受限于固定感受野,难以捕捉长距离依赖。Transformer-based方法:利用
- 基于Python+OpenCV实现SIFT
2301_79809972
pythonpythonplotly
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景与意义SIFT(Scale-InvariantFeatureTransform,尺度不变特征变换)是一种在计算机视觉中广泛应用的局部图像特征描述子。由于其具有尺度不变性、旋转不变性和对光照变化、仿射变换和噪声的鲁棒性,SIFT在图像匹配、物体识别、三维重建等领域
- AIGC虚拟人物VS传统3D建模:技术对比与优劣势分析
AI原生应用开发
AI原生应用开发AIGC3dai
AIGC虚拟人物VS传统3D建模:技术对比与优劣势分析关键词:AIGC虚拟人物、传统3D建模、生成对抗网络、三维重建、数字孪生、自动化生成、手工建模摘要:本文从技术原理、实现流程、应用场景等维度,深入对比AIGC(人工智能生成内容)虚拟人物与传统3D建模技术。通过剖析核心算法、数学模型和工程实践案例,揭示两者在生产效率、成本控制、艺术表现力等方面的差异。结合具体代码实现和行业应用场景,分析各自的优
- nerf-slam论文复现
搬砖者(视觉算法工程师)
gitpython深度学习
nerf-slam实现三维重建详细的在我文档里面(有图片步骤)TableofContentsInstallDownloadDatasetsRunCitationLicenseAcknowledgmentsContactInstallClonerepowithsubmodules:gitclonehttps://github.com/ToniRV/NeRF-SLAM.git--recurse-sub
- 什么是三维重建?如何从二维图像获取三维信息?——从原理到实战的深度解析
唐宇迪(学习规划+技术答疑)
人工智能深度学习神经网络计算机视觉三维重建机器学习pytorch
大家好,我是唐宇迪。这几年带学员做计算机视觉项目时,发现三维重建是绕不开的核心技术——有人用单目摄像头重建物体模型,有人用多视图构建建筑BIM模型,还有人在医疗领域通过CT图像重建器官三维结构。但新手常被相机标定、对极几何、点云配准等概念困扰,甚至混淆三维重建与三维建模的区别。作为计算机视觉的重要分支,三维重建让二维图像拥有了深度信息,在工业检测、医疗诊断、元宇宙等领域发挥关键作用。今天这篇600
- 【OpenCV】双相机结构光成像与图像交叉融合实现【python篇】
社会零时工
OpenCVpythonopencvpython相机
双相机结构光成像与图像交叉融合实现下面我将详细介绍如何使用Python实现双相机结构光成像系统及其图像交叉融合技术。这个系统通常用于三维重建、工业检测等领域。系统架构概述双相机结构光系统通常包含以下组件:两个同步的工业相机结构光投影仪(DLP或LCD)计算机处理系统标定装置实现步骤1.硬件设置与相机同步importcv2importnumpyasnpimporttimeclassDualCamer
- 【云计算系统】云计算中的计算几何
flyair_China
云计算
一、云计算系统中的几何算法云计算系统在资源调度、空间数据处理、安全加密及大规模优化等场景中广泛运用几何算法以提升效率与精度。空间数据处理与索引算法空间索引算法(R树、四叉树)作用:高效管理地理空间数据(如地图坐标、三维点云),支持快速范围查询与邻近搜索。应用:云GIS平台中实时查询地理信息(如道路、建筑位置);物流路径规划中缩短计算时间50%以上。三维重建算法(三角剖分、曲面重建)作用:将点云数据
- 散斑结构光测试图像资源介绍:为三维重建提供高质量图像资源
散斑结构光测试图像资源介绍:为三维重建提供高质量图像资源【下载地址】散斑结构光测试图像资源介绍本项目提供了一套高质量的散斑结构光测试图像资源,专为散斑结构光研究与实验设计。这些图像不仅适用于三维重建和特征提取等高级研究,还配有详细的处理说明,帮助研究人员快速上手并深入探索。通过使用本资源,您可以轻松开展散斑结构光相关的实验,提升研究效率与精度。所有资源均可在合法合规的前提下自由使用,助力您的科研创
- Neus复现(DTU数据集)
ashore_xsl
python3d算法linux
复现参考链接:1、Ubuntu复现NeuS(用体绘制学习神经隐式曲面用于多视图重建)——NeRF应用:表面重建_neus复现-CSDN博客2、Ubuntu18.04复现NeuS(Pytorch)_neus复现-CSDN博客3、GitHub-Totoro97/NeuS:CodereleaseforNeuS4、【三维重建】【深度学习】【数据集】基于COLMAP制作自己的NeuS(DTU格式)数据集_d
- 【深度学习新浪潮】如何入门三维重建?
小米玄戒Andrew
深度学习新浪潮图像处理基石深度学习人工智能图像处理计算机视觉python视觉几何opencv
入门三维重建算法技术需要结合数学基础、计算机视觉理论、编程实践和项目经验,以下是系统的学习路径和建议:一、基础知识储备1.数学基础线性代数:矩阵运算、向量空间、特征分解(用于相机矩阵、变换矩阵推导)。几何基础:三维几何(点、线、面的表示)、射影几何(单应矩阵、本质矩阵、基础矩阵)、李群与李代数(SLAM中的位姿优化)。概率与统计:贝叶斯估计、概率图模型(SLAM中的状态估计)、随机过程(滤波算法如
- 基于 SIFT 对图像进行局部特征匹配附Matlab代码
Matlab科研工作室
matlab计算机视觉开发语言
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍图像匹配是计算机视觉领域的一项基础且关键的技术,它旨在寻找不同图像之间的对应关系,进而为物体识别、三维重建、图像拼接等高级应用提供坚实的基础。在众多的图像匹配方法中,局部特征
- 千亿医疗AI市场爆发:三甲医院如何靠大模型实现90%诊断准确率?
摆烂大大王
llamadeepseek人工智能llamadeepseekAIGC健康医疗
凌晨三点的北京协和医院放射科,最后一份胸部CT影像被输入AI系统。屏幕瞬间标记出5处微小结节,三维重建图精准勾勒血管绕行路径,并弹出历史对比数据:“3号结节体积半年增长15%,边缘毛刺征阳性,建议穿刺活检”。主治医师轻点审核键,结构化报告自动生成——这是2025年中国顶级三甲医院的日常一幕,也是AI大模型重构医疗诊断链的缩影。一、技术突破:从单点试用到临床刚需影像诊断进入“秒级时代”肺结节检测:A
- 相机成像原理_键盘摄影(一)——相机成像基本元件
weixin_39620273
相机成像原理
写在前面笔者在就读本科期间,开始接触计算机视觉领域,主要包括传统的图像处理,研究生期间开始了解深度学习,三维重建和SLAM(同时定位和建图)。可是对于其中使用到的最重要的传感器,相机,它的成像原理知之甚少,照片是怎么成像的?有幸在工作之余玩起了胶片相机,学习了一些摄影知识,在此和大家分享相关知识,欢迎友好地指正和勘误,轻喷。随着器件的发展,目前的相机类型丰富,我们可以从基本的元件讲起,主要涉及到胶
- 科研论文术语全解析:彻底搞懂什么是Baseline、Pipeline..........等内容【2025最新版!!!】
那就举个栗子!
计算机视觉解决方案人工智能
引言在撰写科研论文的过程中,尤其是在计算机视觉、机器人、SLAM以及三维重建等领域,准确理解并使用核心术语对于展示研究的科学性、系统性具有至关重要的作用。术语不仅是论文结构的骨架,也是向同行传达研究设计与创新思路的重要桥梁。本文旨在从实际科研写作的角度,系统性分析高频科研术语的定义与应用,帮助初学者准确理解其含义,掌握其写作位置与逻辑,最后以SLAM与3D高斯泼溅(3DGaussianSplatt
- 智能光学计算成像技术与应用前沿会议通知
m0_75133639
光电光学成像全息成像光学光电光子学光电工程师生物医学工程
会议背景智能光学计算成像是人工智能与光学成像深度融合的前沿领域,通过深度学习、光学神经网络、超表面光学及量子光学等技术,显著推动成像技术的革新。当前研究热点包括:-深度学习赋能的成像技术:如高速多模光纤成像、神经渲染全息三维重建、超分辨率成像-先进光谱与计算成像:基于超表面和衍射光栅的高光谱信息获取、压缩感知成像、无透镜成像-端到端联合设计:融合可微光学模型与深度学习算法,实现硬件-软件协同优化会
- 人工智能在医疗影像诊断上的最新成果:更精准地识别疾病
广州正荣
人工智能科技大数据
摘要:本论文深入探讨人工智能在医疗影像诊断领域的最新突破,聚焦于其在精准识别疾病方面的显著成果。通过分析深度学习、多模态影像融合、三维重建与可视化以及智能辅助诊断系统等关键技术的应用,阐述人工智能如何提高医疗影像诊断的准确性和效率,为临床诊断和治疗提供有力支持。同时,讨论当前面临的挑战和未来发展趋势,旨在推动人工智能在医疗领域的更广泛应用和深入发展。一、医疗影像诊断在现代医学中占据着核心地位,其准
- OpenCV4与OpenCV-Contrib模块介绍
weixin_43162015
计算机视觉人工智能opencv
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档OpenCV4与OpenCV-Contrib模块介绍一、OpenCV常用模块二、扩展模块一、OpenCV常用模块位于:D:\OpenCV\4.5.5\build\modules各模块的功能如下:calib3d:该模块由相机校准(calibration)和三维重建(3d)两个部分组成,主要用于相机标定与三维视觉等;core:OpenCV
- 【SLAM中的点云处理:从基础到实战】
Unpredictable222
SLAM算法自动驾驶自主导航算法自动驾驶ubuntuc++笔记
最近一直在学SLAM算法,发现点云处理是非常非常重要的,我就再认真学了一遍关于点云处理的内容(看了高翔老师的一本书——《自动驾驶与机器人中的SLAM技术:从理论到实践》,写得非常好,还有配套的代码),这篇博客就作为我的点云处理学习笔记,分享给大家!1.引言点云在SLAM中的核心作用:激光雷达SLAM(如LOAM)、三维重建、自动驾驶感知。四大基础任务:最近邻搜索(数据关联、特征匹配)。几何拟合(平
- python三维重建代码_基于Python的三维重建开源代码
weixin_39934085
python三维重建代码
【实例简介】基于Python的三维重建开源代码,包括特征提取,SFM,PMVS以及CMVS等相关功能!【实例截图】【核心代码】sfm-bundler(python)└──sfm-bundler(python)├──osm-bundlerWin32│├──icons││├──info_icon.png││└──python_icon.png│├──osmbundler││├──cameras│││└
- python opencv 三维重建_【python+opencv实现基于图片序列的三维重建】 - #1
weixin_39778815
pythonopencv三维重建
2015年09月05-三维重建一直是机器视觉研究的热门方向,比如,基于双目视觉,单目视觉,多视几何,光场三维重建等等。每一种方法都有其有点和局限性。单目视觉需要拍摄多幅图像,并且在拍摄过程中需要不断的调整相机的聚焦位置,最后采取一定的融合方法来找到每幅图像中的清晰像素点,从而得到深度信息。这种方法也被称为焦点堆栈法。在实际测试多个场景后,发现二级梯度评价函数和拉普拉斯评价函数融合效果较好。程201
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>