semi-global matching(SGM)是一种用于计算双目视觉中视差(disparity)的半全局匹配算法,在OpenCV中的实现为semi-global block matching(SGBM);
opencv中SGBM算法的参数含义及数值选取
一、 预处理参数
1:preFilterCap:水平sobel预处理后,映射滤波器大小。默认为15
int ftzero =max(params.preFilterCap, 15) | 1;
opencv测试例程stereo_match.cpp中取63。
二 、代价参数
2:SADWindowSize:计算代价步骤中SAD窗口的大小。由源码得,此窗口默认大小为5。
SADWindowSize.width= SADWindowSize.height = params.SADWindowSize > 0 ?params.SADWindowSize : 5;
注:窗口大小应为奇数,一般应在3x3到21x21之间。
3:minDisparity:最小视差,默认为0。此参数决定左图中的像素点在右图匹配搜索的起点。int 类型
4:numberOfDisparities:视差搜索范围,其值必须为16的整数倍(CV_Assert( D % 16 == 0 );)。最大搜索边界= numberOfDisparities+ minDisparity。int 类型
三 、动态规划参数
动态规划有两个参数,分别是P1、P2,它们控制视差变化平滑性的参数。P1、P2的值越大,视差越平滑。P1是相邻像素点视差增/减 1 时的惩罚系数;P2是相邻像素点视差变化值大于1时的惩罚系数。P2必须大于P1。需要指出,在动态规划时,P1和P2都是常数。
5:opencv测试例程stereo_match.cpp中,P1 = 8*cn*sgbmWinSize*sgbmWinSize;
6:opencv测试例程stereo_match.cpp中,P2 = 32*cn*sgbmWinSize*sgbmWinSize;
四、后处理参数
7:uniquenessRatio:唯一性检测参数。对于左图匹配像素点来说,先定义在numberOfDisparities搜索区间内的最低代价为mincost,次低代价为secdmincost。如果满足
即说明最低代价和次第代价相差太小,也就是匹配的区分度不够,就认为当前匹配像素点是误匹配的。
opencv测试例程stereo_match.cpp中,uniquenessRatio=10。int 类型
8:disp12MaxDiff:左右一致性检测最大容许误差阈值。int 类型
opencv测试例程stereo_match.cpp中,disp12MaxDiff =1。
9:speckleWindowSize:视差连通区域像素点个数的大小。对于每一个视差点,当其连通区域的像素点个数小于speckleWindowSize时,认为该视差值无效,是噪点。
opencv测试例程stereo_match.cpp中,speckleWindowSize=100。
10:speckleRange:视差连通条件,在计算一个视差点的连通区域时,当下一个像素点视差变化绝对值大于speckleRange就认为下一个视差像素点和当前视差像素点是不连通的。
opencv测试例程stereo_match.cpp中,speckleRange=10。
测试示例:
enum { STEREO_BM = 0, STEREO_SGBM = 1, STEREO_HH = 2, STEREO_VAR = 3, STEREO_3WAY = 4 };
void calDispWithSGBM(Mat imgL, Mat imgR, Mat &imgDisparity8U)
{
cv::Size imgSize = imgL.size();
int numberOfDisparities = ((imgSize.width / 8) + 15) & -16;
cv::Ptr sgbm = cv::StereoSGBM::create(0, 16, 3);
sgbm->setPreFilterCap(63);
int SADWindowSize = 9;
int sgbmWinSize = SADWindowSize > 0 ? SADWindowSize : 3;
sgbm->setBlockSize(sgbmWinSize);
int cn = imgL.channels();
sgbm->setP1(8 * cn*sgbmWinSize*sgbmWinSize);
sgbm->setP2(32 * cn*sgbmWinSize*sgbmWinSize);
sgbm->setMinDisparity(0);
sgbm->setNumDisparities(numberOfDisparities);
sgbm->setUniquenessRatio(10);
sgbm->setSpeckleWindowSize(100);
sgbm->setSpeckleRange(32);
sgbm->setDisp12MaxDiff(1);
int alg = STEREO_SGBM;
if (alg == STEREO_HH)
sgbm->setMode(cv::StereoSGBM::MODE_HH);
else if (alg == STEREO_SGBM)
sgbm->setMode(cv::StereoSGBM::MODE_SGBM);
else if (alg == STEREO_3WAY)
sgbm->setMode(cv::StereoSGBM::MODE_SGBM_3WAY);
Mat imgDisparity16S = Mat(imgL.rows, imgL.cols, CV_16S);
sgbm->compute(imgL, imgR, imgDisparity16S);
//--Display it as a CV_8UC1 image:16位有符号转为8位无符号
imgDisparity16S.convertTo(imgDisparity8U, CV_8U, 255 / (numberOfDisparities*16.));
}
int main()
{
//--读取图像
Mat imgL = imread("..\\image\\aloeL.jpg", 0);
Mat imgR = imread("..\\image\\aloeR.jpg", 0);
//--And create the image in which we will save our disparities
Mat imgDisparity8U = Mat(imgL.rows, imgL.cols, CV_8UC1);
//calDispWithBM(imgL, imgR, imgDisparity8U);
calDispWithSGBM(imgL, imgR, imgDisparity8U);
}