二叉查找树在频繁的动态更新过程中,可能会出现树的高度远大于 log2n 的情况,从而导致各个操作的效率下降。
极端情况下,二叉树会退化为链表,时间复杂度会退化到 O(n)。
平衡二叉树的严格定义是这样的:
二叉树中任意一个节点的左右子树的高度相差不能大于 1。
从这个定义来看,上一节我们讲的完全二叉树、满二叉树其实都是平衡二叉树,但是非完全二叉树也有可能是平衡二叉树。
发明平衡二叉查找树这类数据结构的初衷是,
解决普通二叉查找树在频繁的插入、删除等动态更新的情况下,
出现时间复杂度退化的问题。
平衡二叉查找树中“平衡”的意思,其实就是让整棵树左右看起来比较“对称”、比较“平衡”,不要出现左子树很高、右子树很矮的情况。
这样就能让整棵树的高度相对来说低一些,相应的插入、删除、查找等操作的效率高一些。
红黑树的英文是“Red-Black Tree”,简称 R-B Tree。它是一种不严格的平衡二叉查找树
红黑树中的节点,一类被标记为黑色,一类被标记为红色。
除此之外,一棵红黑树还需要满足这样几个要求:
根节点是黑色的;
每个叶子节点都是黑色的空节点(NIL),也就是说,叶子节点不存储数据;
任何相邻的节点都不能同时为红色,也就是说,红色节点是被黑色节点隔开的;
每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点;
这里的第二点要求“叶子节点都是黑色的空节点”,稍微有些奇怪,它主要是为了简化红黑树的代码实现而设置的,
下一节我们讲红黑树的实现的时候会讲到。
这节我们暂时不考虑这一点,所以,在画图和讲解的时候,我将黑色的、空的叶子节点都省略掉了。
平衡二叉查找树的初衷,是为了解决二叉查找树因为动态更新导致的性能退化问题。
所以,“平衡”的意思可以等价为性能不退化。“近似平衡”就等价为性能不会退化的太严重。
二叉查找树很多操作的性能都跟树的高度成正比。
二叉查找树很多操作的性能都跟树的高度成正比。一棵极其平衡的二叉树(满二叉树或完全二叉树)的高度大约是 log2n,
所以如果要证明红黑树是近似平衡的,我们只需要分析,红黑树的高度是否比较稳定地趋近 log2n 就好了。
红黑树的高度不是很好分析,我带你一步一步来推导。
首先,我们来看,如果我们将红色节点从红黑树中去掉,那单纯包含黑色节点的红黑树的高度是多少呢?
红色节点删除之后,有些节点就没有父节点了,它们会直接拿这些节点的祖父节点(父节点的父节点)作为父节点。
所以,之前的二叉树就变成了四叉树。
前面红黑树的定义里有这么一条:
从任意节点到可达的叶子节点的每个路径包含相同数目的黑色节点。
我们从四叉树中取出某些节点,放到叶节点位置,四叉树就变成了完全二叉树。
所以,仅包含黑色节点的四叉树的高度,比包含相同节点个数的完全二叉树的高度还要小。
上一节我们说,完全二叉树的高度近似 log2n,这里的四叉“黑树”的高度要低于完全二叉树,
所以去掉红色节点的“黑树”的高度也不会超过 log2n。
我们现在知道只包含黑色节点的“黑树”的高度,那我们现在把红色节点加回去,高度会变成多少呢?
从上面我画的红黑树的例子和定义看,
在红黑树中,红色节点不能相邻,也就是说,有一个红色节点就要至少有一个黑色节点,将它跟其他红色节点隔开。
红黑树中包含最多黑色节点的路径不会超过 log2n,所以加入红色节点之后,最长路径不会超过 2log2n,
也就是说,红黑树的高度近似 2log2n。
所以,红黑树的高度只比高度平衡的 AVL 树的高度(log2n)仅仅大了一倍,
在性能上,下降得并不多。
这样推导出来的结果不够精确,实际上红黑树的性能更好。
为什么在工程中大家都喜欢用红黑树这种平衡二叉查找树?
我们前面提到 Treap、Splay Tree,绝大部分情况下,它们操作的效率都很高,但是也无法避免极端情况下时间复杂度的退化。
尽管这种情况出现的概率不大,但是对于单次操作时间非常敏感的场景来说,它们并不适用。
AVL 树是一种高度平衡的二叉树,所以查找的效率非常高,但是,有利就有弊,AVL 树为了维持这种高度的平衡,就要付出更多的代价。每次插入、删除都要做调整,就比较复杂、耗时。所以,对于有频繁的插入、删除操作的数据集合,使用 AVL 树的代价就有点高了。
红黑树只是做到了近似平衡,并不是严格的平衡,所以在维护平衡的成本上,要比 AVL 树要低。
所以,红黑树的插入、删除、查找各种操作性能都比较稳定。
对于工程应用来说,要面对各种异常情况,为了支撑这种工业级的应用,我们更倾向于这种性能稳定的平衡二叉查找树。
一棵合格的红黑树需要满足这样几个要求:
根节点是黑色的;
每个叶子节点都是黑色的空节点(NIL),也就是说,叶子节点不存储数据;
任何相邻的节点都不能同时为红色,也就是说,红色节点是被黑色节点隔开的;
每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点。
在插入、删除节点的过程中,第三、第四点要求可能会被破坏,而我们要做的“平衡调整”,
实际上就是要把被破坏的第三、第四点恢复过来。
左旋(rotate left) = 围绕某个节点的左旋,
右旋(rotate right) = 围绕某个节点的右旋。
红黑树规定,插入的节点必须是红色的。而且,二叉查找树中新插入的节点都是放在叶子节点上。
所以,关于插入操作的平衡调整,有这样两种特殊情况,但是也都非常好处理。
如果插入节点的父节点是黑色的,那我们什么都不用做,它仍然满足红黑树的定义。
如果插入的节点是根节点,那我们直接改变它的颜色,把它变成黑色就可以了。
除此之外,其他情况都会违背红黑树的定义,于是我们就需要进行调整,调整的过程包含两种基础的操作:
左右旋转和改变颜色。
红黑树的平衡调整过程是一个迭代的过程。
我们把正在处理的节点叫作关注节点。
关注节点会随着不停地迭代处理,而不断发生变化。
最开始的关注节点就是新插入的节点。
新节点插入之后,如果红黑树的平衡被打破,那一般会有下面三种情况。
我们只需要根据每种情况的特点,不停地调整,就可以让红黑树继续符合定义,也就是继续保持平衡。
我们下面依次来看每种情况的调整过程。
提醒你注意下,为了简化描述,我把父节点的兄弟节点叫作叔叔节点,父节点的父节点叫作祖父节点。
CASE 1:如果关注节点是 a,它的叔叔节点 d 是红色,我们就依次执行下面的操作:
将关注节点 a 的父节点 b、叔叔节点 d 的颜色都设置成黑色;
将关注节点 a 的祖父节点 c 的颜色设置成红色;
关注节点变成 a 的祖父节点 c;
跳到 CASE 2 或者 CASE 3。
CASE 2:如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点 b 的右子节点,我们就依次执行下面的操作:
关注节点变成节点 a 的父节点 b;
围绕新的关注节点b 左旋;
跳到 CASE 3。
CASE 3:如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点 b 的左子节点,我们就依次执行下面的操作:
围绕关注节点 a 的祖父节点 c 右旋;
将关注节点 a 的父节点 b、兄弟节点 c 的颜色互换。
调整结束。
红黑树插入操作的平衡调整还不是很难,但是它的删除操作的平衡调整相对就要难多了。
不过原理都是类似的,我们依旧只需要根据关注节点与周围节点的排布特点,按照一定的规则去调整就行了。
删除操作的平衡调整分为两步,
第一步是针对删除节点初步调整。
初步调整只是保证整棵红黑树在一个节点删除之后,仍然满足最后一条定义的要求,也就是说,每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点;
第二步是针对关注节点进行二次调整,
让它满足红黑树的第三条定义,即不存在相邻的两个红色节点。
这里需要注意一下,红黑树的定义中“只包含红色节点和黑色节点”,经过初步调整之后,为了保证满足红黑树定义的最后一条要求,有些节点会被标记成两种颜色,“红 - 黑”或者“黑 - 黑”。如果一个节点被标记为了“黑 - 黑”,那在计算黑色节点个数的时候,要算成两个黑色节点。
在下面的讲解中,如果一个节点既可以是红色,也可以是黑色,在画图的时候,我会用一半红色一半黑色来表示。如果一个节点是“红 - 黑”或者“黑 - 黑”,我会用左上角的一个小黑点来表示额外的黑色。
CASE 1:如果要删除的节点是 a,它只有一个子节点 b,那我们就依次进行下面的操作:
删除节点 a,并且把节点 b 替换到节点 a 的位置,这一部分操作跟普通的二叉查找树的删除操作一样;
节点 a 只能是黑色,节点 b 也只能是红色,其他情况均不符合红黑树的定义。这种情况下,我们把节点 b 改为黑色;
调整结束,不需要进行二次调整。
CASE 2:如果要删除的节点 a 有两个非空子节点,并且它的后继节点就是节点 a 的右子节点 c。我们就依次进行下面的操作:
如果节点 a 的后继节点就是右子节点 c,那右子节点 c 肯定没有左子树。我们把节点 a 删除,并且将节点 c 替换到节点 a 的位置。这一部分操作跟普通的二叉查找树的删除操作无异;
然后把节点 c 的颜色设置为跟节点 a 相同的颜色;
如果节点 c 是黑色,为了不违反红黑树的最后一条定义,我们给节点 c 的右子节点 d 多加一个黑色,这个时候节点 d 就成了“红 - 黑”或者“黑 - 黑”;
这个时候,关注节点变成了节点 d,第二步的调整操作就会针对关注节点来做。
CASE 3:如果要删除的是节点 a,它有两个非空子节点,并且节点 a 的后继节点不是右子节点,我们就依次进行下面的操作:
找到后继节点 d,并将它删除,删除后继节点 d 的过程参照 CASE 1;
将节点 a 替换成后继节点 d;
把节点 d 的颜色设置为跟节点 a 相同的颜色;
如果节点 d 是黑色,为了不违反红黑树的最后一条定义,我们给节点 d 的右子节点 c 多加一个黑色,这个时候节点 c 就成了“红 - 黑”或者“黑 - 黑”;
这个时候,关注节点变成了节点 c,第二步的调整操作就会针对关注节点来做。
经过初步调整之后,关注节点变成了“红 - 黑”或者“黑 - 黑”节点。针对这个关注节点,我们再分四种情况来进行二次调整。二次调整是为了让红黑树中不存在相邻的红色节点。
CASE 1:如果关注节点是 a,它的兄弟节点 c 是红色的,我们就依次进行下面的操作:
围绕关注节点 a 的父节点 b 左旋;
关注节点 a 的父节点 b 和祖父节点 c 交换颜色;
关注节点不变;
继续从四种情况中选择适合的规则来调整。
CASE 2:如果关注节点是 a,它的兄弟节点 c 是黑色的,并且节点 c 的左右子节点 d、e 都是黑色的,我们就依次进行下面的操作:
将关注节点 a 的兄弟节点 c 的颜色变成红色;
从关注节点 a 中去掉一个黑色,这个时候节点 a 就是单纯的红色或者黑色;
给关注节点 a 的父节点 b 添加一个黑色,这个时候节点 b 就变成了“红 - 黑”或者“黑 - 黑”;
关注节点从 a 变成其父节点 b;
继续从四种情况中选择符合的规则来调整。
CASE 3:如果关注节点是 a,它的兄弟节点 c 是黑色,c 的左子节点 d 是红色,c 的右子节点 e 是黑色,我们就依次进行下面的操作:
围绕关注节点 a 的兄弟节点 c 右旋;
节点 c 和节点 d 交换颜色;
关注节点不变;
跳转到 CASE 4,继续调整。
CASE 4:如果关注节点 a 的兄弟节点 c 是黑色的,并且 c 的右子节点是红色的,我们就依次进行下面的操作:
围绕关注节点 a 的父节点 b 左旋;
将关注节点 a 的兄弟节点 c 的颜色,跟关注节点 a 的父节点 b 设置成相同的颜色;
将关注节点 a 的父节点 b 的颜色设置为黑色;
从关注节点 a 中去掉一个黑色,节点 a 就变成了单纯的红色或者黑色;
将关注节点 a 的叔叔节点 e 设置为黑色;
调整结束。
为什么红黑树的定义中,
要求叶子节点是黑色的空节点?
要我说,之所以有这么奇怪的要求,其实就是为了实现起来方便。
只要满足这一条要求,那在任何时刻,红黑树的平衡操作都可以归结为我们刚刚讲的那几种情况。
还是有点不好理解,我通过一个例子来解释一下。
假设红黑树的定义中不包含刚刚提到的那一条“叶子节点必须是黑色的空节点”,我们往一棵红黑树中插入一个数据,新插入节点的父节点也是红色的,两个红色的节点相邻,这个时候,红黑树的定义就被破坏了。那我们应该如何调整呢?
你会发现,这个时候,我们前面讲的插入时,三种情况下的平衡调整规则,没有一种是适用的。
但是,如果我们把黑色的空节点都给它加上,变成下面这样,你会发现,它满足 CASE 2 了。
你可能会说,你可以调整一下平衡调整规则啊。比如把 CASE 2 改为“如果关注节点 a 的叔叔节点 b 是黑色或者不存在,a 是父节点的右子节点,就进行某某操作”。当然可以,但是这样的话规则就没有原来简洁了。
你可能还会说,这样给红黑树添加黑色的空的叶子节点,会不会比较浪费存储空间呢?答案是不会的。虽然我们在讲解或者画图的时候,每个黑色的、空的叶子节点都是独立画出来的。实际上,在具体实现的时候,我们只需要像下面这样,共用一个黑色的、空的叶子节点就行了。
红黑树是一种平衡二叉查找树。
它是为了解决普通二叉查找树在数据更新的过程中,复杂度退化的问题而产生的。
红黑树的高度近似 log2n,所以它是近似平衡,插入、删除、查找操作的时间复杂度都是 O(logn)。
因为红黑树是一种性能非常稳定的二叉查找树,所以,在工程中,但凡是用到动态插入、删除、查找数据的场景,都可以用到它。
不过,它实现起来比较复杂,如果自己写代码实现,难度会有些高,这个时候,我们其实更倾向用跳表来替代它。
可以的话,可以看看我转载的另一篇文章,看看是否有收获.
我就来总结一下,如何比较轻松地看懂红黑树的操作过程。
第一点,把红黑树的平衡调整的过程比作魔方复原,不要过于深究这个算法的正确性。
你只需要明白,只要按照固定的操作步骤,保持插入、删除的过程,不破坏平衡树的定义就行了。
第二点,找准关注节点,不要搞丢、搞错关注节点。
因为每种操作规则,都是基于关注节点来做的,只有弄对了关注节点,才能对应到正确的操作规则中。
在迭代的调整过程中,关注节点在不停地改变,所以,这个过程一定要注意,不要弄丢了关注节点。
第三点,插入操作的平衡调整比较简单,但是删除操作就比较复杂。
针对删除操作,我们有两次调整,第一次是针对要删除的节点做初步调整,让调整后的红黑树继续满足第四条定义,“每个节点到可达叶子节点的路径都包含相同个数的黑色节点”。
但是这个时候,第三条定义就不满足了,有可能会存在两个红色节点相邻的情况。
第二次调整就是解决这个问题,让红黑树不存在相邻的红色节点。
30张图带你彻底理解红黑树
https://zhangboyi.blog.csdn.net/article/details/88418535
来源: 数据结构与算法之美 王争