- Cut, Paste and Learn方法解读
wangxinwei2000
深度学习人工智能
Abstract问题背景:标注数据的缺乏:在实例检测任务中,部署物体检测模型的一个主要障碍是缺乏大量标注数据。例如,在一个特定的厨房环境中找到包含实例的大型标注数据集是不太可能的。每当面对新的环境和新的物体实例时,都需要进行昂贵的数据收集和标注工作。研究贡献:解决方法:本文提出了一种简单的方法,可以以最小的努力生成大量标注的实例数据集。关键洞察:研究者的关键洞察是,仅仅确保“局部真实感”(patc
- 在COD领域,图像中提取的高频和低频信息分别代表什么?
Wils0nEdwards
计算机视觉人工智能
在CamouflagedObjectDetection(COD)领域中,图像中的高频和低频信息在特征提取和物体检测中有着不同的含义和作用。COD的本质是解决目标在视觉上与背景高度相似的问题,因此合理利用图像的频率信息(高频和低频)有助于提高检测效果。高频信息高频信息指的是图像中变化迅速的部分,通常包括细节、边缘和纹理等特征。在COD中:高频信息代表图像中的边缘、细节和纹理特征。这些特征对于分割伪装
- 行空板上YOLO和Mediapipe图片物体检测的测试
DFRobot智位机器人
DF创客社区YOLO
Introduction经过前面三篇教程帖子(yolov8n在行空板上的运行(中文),yolov10n在行空板上的运行(中文),Mediapipe在行空板上的运行(中文))的介绍,我们对如何使用官方代码在行空板上运行物体检测的AI模型有了基本的概念,并对常见的模型进行了简单的测试和对比。进一步的,本文将对不同模型的图片物体检查进行详细的对比分析,包括不同输入尺寸、不同模型设置等方面的对比,并提供在
- Azure和Transformers的详细解释
漫天飞舞的雪花
azuremicrosoftpython
AzureAI是微软提供的人工智能(AI)解决方案的集合,旨在帮助开发人员、数据科学家和企业轻松构建和部署智能应用程序。以下是对AzureAI各个方面的详细解释:AzureAI主要组件AzureCognitiveServices(认知服务):计算视觉:包括图像识别、物体检测、人脸识别以及图像标注等。语音服务:包括语音识别、语音合成、说话人识别和语音翻译等。语言理解服务:包括文本分析、语言翻译、情感
- YOLOv8改进 | Conv篇 | YOLOv8引入SAConv模块
小李学AI
YOLOv8有效涨点专栏YOLO深度学习计算机视觉目标检测人工智能
1.SAConv介绍1.1摘要:许多现代物体检测器通过使用三思而后行的机制表现出出色的性能。在本文中,我们在目标检测的主干设计中探索了这种机制。在宏观层面,我们提出了递归特征金字塔,它将特征金字塔网络的额外反馈连接合并到自下而上的骨干层中。在微观层面,我们提出了可切换空洞卷积,它将具有不同空洞率的特征进行卷积,并使用开关函数收集结果。将它们结合起来就形成了DetectoRS,它显着提高了目标检测的
- 华为鸿蒙Core Vision Kit 骨骼检测技术
神码兄弟
华为harmonyos
鸿蒙CoreVisionKit是华为鸿蒙系统中的一个图像处理框架,旨在提供各种计算机视觉功能,包括物体检测、人脸识别、文本识别等。骨骼检测是其中的一项功能,主要用于检测和识别人类身体的骨骼结构。骨骼检测的关键点骨骼点检测:通过骨骼检测功能,可以识别出人体的关键骨骼点,如肩膀、肘部、膝盖等。每个骨骼点都有特定的坐标,可以用于进一步分析人体姿势。姿势估计:在检测到骨骼点后,系统可以进行姿势估计,即通过
- 论文阅读瞎记(四) Cascade R-CNN: Delving into High Quality Object Detection 2017
码大哥
深度学习人工智能
概述在物体检测中1,IOU阈值被用于判定正负样本。在低IOU阈值比如0.5的状态下训练模型经常产生噪音预测,然而检测效果会随着IOU增加而降低。两个主要因素:1.训练时的过拟合,正样本指数消失2.检测器最优IOU与输入假设的不匹配。一个单阶段的物体检测器CascadeR-CNN被提出用于解决这些问题。网络由一个检测序列组成,这些序列训练时会伴随IOU增长从而对FP样本更加有选择性地判别。检测器一个
- 基于yolov8的绝缘子缺陷检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO
【算法介绍】基于YOLOv8的绝缘子缺陷检测系统是一种利用先进深度学习技术的高效解决方案,旨在提升电力行业中输电线路的维护和监控水平。YOLOv8作为YOLO系列算法的最新版本,具备更高的检测速度和精度,特别适用于实时物体检测任务。该系统通过深入分析并标注绝缘子数据集,训练YOLOv8模型以精确识别输电线上的绝缘子及其缺陷状态。利用多尺度检测、FPN结构以及CSPDarknet网络等技术,YOLO
- 深度学习(十一):YOLOv9之最新的目标检测器解读
从零开始的奋豆
深度学习深度学习人工智能
YOLOv91.YOLOv9:物体检测技术的飞跃发展1.1YOLOv9简介1.2YOLOv9的核心创新1.2.1信息瓶颈:神经网络在抽取相关性时的理论边界1.2.2可逆函数:保留完整的信息流1.2.3对轻型模型的影响:解决信息丢失1.2.4可编程梯度信息(PGI):解决信息瓶颈1.2.5通用高效层聚合网络(GELAN):实现更高的参数利用率和计算效率1.2.6结论:合作与创新2.代码1.YOLOv
- 基于深度学习的自适应架构
SEU-WYL
深度学习dnn深度学习架构人工智能
基于深度学习的自适应架构是一种能够动态调整自身结构和参数的神经网络体系,以更好地适应不同的任务和环境需求。这类架构旨在提高模型的灵活性、效率和泛化能力,特别是在面对资源受限或任务多样化的情况下。以下是对该主题的详细介绍:1.背景与动机任务多样性:在现实世界中,模型可能需要处理各种不同的任务,如图像分类、物体检测、自然语言处理等。传统的固定架构模型往往难以在所有任务上都表现出色。资源受限环境:在边缘
- 挑战杯 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉
laafeer
python
文章目录0简介1二维码检测2算法实现流程3特征提取4特征分类5后处理6代码实现5最后0简介优质竞赛项目系列,今天要分享的是基于机器学习的二维码识别检测-opencv二维码识别检测机器视觉该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1二维码检测物体检测就是对数字图像中一类特定的物体
- 【机器学习案例7】计算机视觉中的小物体检测:基于补丁的方法
suoge223
机器学习实用指南机器学习计算机视觉人工智能
专栏导读作者简介:工学博士,高级工程师,专注于工业软件算法研究本文已收录于专栏:《机器学习实用指南》本专栏旨在提供1.机器学习经典案例及源码;2.开源机器学习训练数据集;3.机器学习前沿专业博文。以案例的形式从实用的角度出发,快速上手机器学习项目,在案例中成长,摆脱按部就班填鸭式教学。欢迎订阅专栏,订阅用户可私聊进入机器学习交流群(知识交流、问题解答),并获赠丰厚的机器学习相关学习资料(教材、源码
- Baumer工业相机堡盟相机彩色相机如何实现白平衡
格林威
工业相机数码相机opencvc++计算机视觉开发语言
项目场景Baumer工业相机堡盟相机是一种高性能、高质量的工业相机,可用于各种应用场景,如物体检测、计数和识别、运动分析和图像处理。Baumer的万兆网相机拥有出色的图像处理性能,可以实时传输高分辨率图像。此外,该相机还具有快速数据传输、低功耗、易于集成以及高度可扩展性等特点。Baumer工业相机中彩色相机具有色彩还原度真实的特性,适用于颜色分析的工业应用。技术背景Baumer工业彩色相机由于传感
- 『论文阅读|利用深度学习在热图像中实现无人机目标检测』
Dymc
深度学习目标检测论文论文阅读深度学习无人机
利用深度学习在热图像中实现无人机目标检测摘要1引言1.1小物体检测1.2物体检测中的模型组合1.3热图像处理2提出的模型2.1预测头数量2.2骨干网络优化2.3Transformerencoder模块2.4使用滑动窗口和注意力进行卷积2.5训练和运行过程3结果3.1数据集3.2评估指标和平台3.3评估结果4结论论文题目:ObjectDetectioninThermalImagesUsingDeep
- 『论文阅读|研究用于视障人士户外障碍物检测的 YOLO 模型』
Dymc
论文深度学习目标检测论文阅读YOLO
研究用于视障人士户外障碍物检测的YOLO模型摘要1引言2相关工作2.1障碍物检测的相关工作2.2物体检测和其他基于CNN的模型3问题的提出4方法4.1YOLO4.2YOLOv54.3YOLOv64.4YOLOv74.5YOLOv84.6YOLO-NAS5实验和结果5.1数据集和预处理5.2训练和实现细节5.3性能指标5.4性能分析5.4.1YOLOv5的结果5.4.2YOLOv6的结果5.4.3Y
- OpenCV 入门讲解
清水白石008
opencv计算机视觉opencv人工智能计算机视觉
OpenCV入门讲解OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉库,它提供了许多高效实现计算机视觉算法的函数,从基本的滤波到高级的物体检测都有涵盖。OpenCV使用C/C++开发,同时也提供了Python、Java、MATLAB等其他语言的接口。它是跨平台的,可以在Windows、Linux、MacOS、Android、iOS等操作系统上运行
- 如何探索和可视化用于图像中物体检测的 ML 数据
虚无火星车
python深度学习人工智能
近年来,人们越来越认识到深入理解机器学习数据(ML-data)的必要性。不过,鉴于检测大型数据集往往需要耗费大量人力物力,它在计算机视觉(computervision)领域的广泛应用,尚有待进一步开发。通常,在物体检测(ObjectDetection,属于计算机视觉的一个子集)中,通过定义边界框,来定位图像中的物体,不仅可以识别物体,还能够了解物体的上下文、大小、以及与场景中其他元素的关系。同时,
- 2.1.1 摄像头
构图笔记
自动驾驶笔记图像处理自动驾驶
摄像头更多内容,请关注:github:https://github.com/gotonote/Autopilot-Notes.git摄像头是目前自动驾驶车中应用和研究最广泛的传感器,其采集图像的过程最接近人类视觉系统。基于图像的物体检测和识别技术已经相当成熟,随着近几年深度学习的发展,基于深度学习的视觉感知算法已大量应用于实际生活和生产中,在某些任务上甚至已经超越人类水平。在自动驾驶车上,一般会安
- pytorch,cnn,rnn和yolo关系
小小娱乐
pytorchcnnrnn
卷积神经网络(ConvolutionalNeuralNetworks,CNN)和YOLO(YouOnly卷积神经网络(ConvolutionalNeuralNetworks,CNN)和YOLO(YouOnlyLookOnce)都是深度学习中的重要技术,它们在处理图像数据方面有着广泛的应用。CNN是一种以卷积为核心的神经网络,被广泛用于图像分类、物体检测等任务。YOLO则是一种基于CNN的目标检测算
- K210的入手试玩程序介绍
我先去打把游戏先
K210硬件stm32c语言开发语言K210
目录前言一、人脸检测二、物体检测三、RGB控制四、录音播放前言入手试玩程序下载好后,界面长这个样K210如何下载程序一、人脸检测1、点击进入人脸检测2、将其对准人脸,可以识别到人脸3、把右上角的按键向左拨动,可以返回主界面二、物体检测1、点击进入物体检测2、可以识别到物体3、同样的,右上角的按键向左波动退回到主界面三、RGB控制1、点击进入RGB控制2、点击对应的颜色,RGB就会亮对应的颜色3、L
- TBC(Tied Block Convolution):具有共享较薄滤波器的更简洁、更出色的CNN
静静AI学堂
高质量AI论文翻译cnn人工智能神经网络
文章目录摘要引言相关工作TiedBlockConvolution网络设计TBC公式化在瓶颈模块中的TBC/TGCTBC和TFC在注意力模块中的应用实验结果ImageNet分类物体检测和实例分割轻量级注意力消融研究总结补充资料物体检测和实例分割的详细结果额外的Grad-CAM可视化结果
- 科普:坐标系中几何变换及常见公式
9命怪猫
几何学计算机视觉几何学
几何变换”通常指的是对图像进行平移、旋转、缩放、翻转等操作,以改变图像的位置、大小和方向。这些几何变换常用于图像处理、计算机视觉和深度学习领域,用于数据增强、图像预处理、物体检测等任务。具体来说,几何变换包括以下几种主要操作:平移:将图像沿着水平和垂直方向移动一定的距离。旋转:围绕图像中心点或指定点进行旋转,改变图像的方向。缩放:按照指定的比例增大或缩小图像的尺寸。翻转:沿水平或垂直方向对图像进行
- 2.1.1 摄像头
人工智能
摄像头更多内容,请关注:github:https://github.com/gotonote/Autopilot-Notes.git摄像头是目前自动驾驶车中应用和研究最广泛的传感器,其采集图像的过程最接近人类视觉系统。基于图像的物体检测和识别技术已经相当成熟,随着近几年深度学习的发展,基于深度学习的视觉感知算法已大量应用于实际生活和生产中,在某些任务上甚至已经超越人类水平。在自动驾驶车上,一般会安
- Transformer实战-系列教程13:DETR 算法解读
机器学习杨卓越
Transformer实战transformer深度学习DETR物体检测
Transformer实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传点我下载源码1、物体检测说到目标检测你能想到什么faster-rcnn系列,开山之作,各种proposal方法YOLO肯定也少不了,都是基于anchor这路子玩的NMS那也一定得用上,输出结果肯定要过滤一下的如果一个目标检测算法,上面这三点都木有,你说神不神
- YOLOv8相关知识
Array902
深度学习YOLO深度学习机器学习人工智能计算机视觉
YOLOv8可以干点啥图像分类;物体检测;图像分割;姿势识别;计算机视觉经典任务经典框架经典数据集注意:训练的时候用训练集,并且每训练一会使用验证集来验证一下训练到什么程度了,需不需要调参数或者停止,在训练的时候同时使用训练集和验证集;训练完后使用测试集测试。YOLO是什么YOLO发展历程YOLOv8平台安装官方文档:https://docs.ultralytics.com/zh图像分类如何训练自
- OpenShift 4 - 在 OpenShift 上运行物体检测 AI/ML 应用
dawnsky.liu
openshift人工智能AIjupyter
《OpenShift/RHEL/DevSecOps汇总目录》说明:本文已经在OpenShift4.14+RHODS2.5.0的环境中验证说明:请先根据《OpenShift4-部署OpenShiftAI环境,运行AI/ML应用(视频)》一文完成OpenShiftAI环境的安装。注意:如无特殊说明,和OpenShiftAI相关的Blog均无需GPU。文章目录运行和部署后端模型运行测试后端模型将后端模型
- 举例说明计算机视觉(CV)技术的优势和挑战
做一个AC梦
计算机视觉
计算机视觉(CV)技术的优势:高速和准确性:计算机视觉技术可以处理大量的图像或视频数据,并以非常高的速度和准确性进行分析和识别。这使得它在许多领域中具有广泛的应用,如人脸识别、物体检测和图像分类等。自动化和效率:CV技术可以实现图像和视频的自动分析和处理,减少了人力资源的需求,并提高了工作效率。它可以帮助企业降低成本,并提高生产力。大规模应用:CV技术可以在各种场景中广泛应用,包括工业、医疗、安全
- 物体检测类型实验,华为云ModelArts数据管理功能新体验
叶一一yyy
华为云人工智能大数据
前言在零售行业的线下店铺中,最大的工作量之一便是检查货架的货品情况,及时理货补货。对于某些供需较大的货品,及时补充空缺,对提升消费者购物满意度有着重要的提升作用。然而,每个区域的货物成百上千,加上一些外界因素,比如店铺灯光、视觉盲区,这些因素叠加在一起,可能会影响店员对货物数量的感知。最近在研究AI和视觉识别,追踪货架上的货物情况。借助工具,实现店员对货架商品动态的了如指掌的场景,是我这次研究的主
- OpenCV学习记录——轮廓检测
KAIs32
树莓派——OpenCVopencv学习人工智能计算机视觉嵌入式硬件
文章目录前言一、寻找、绘制轮廓二、具体应用代码前言寻找目标图像的轮廓并绘制出该轮廓是我们进行图像识别时常用的手段,轮廓是图像中连续的边界线,可以用于物体检测、形状分析等应用。为了获取更高的准确性,会先进行二值化处理,在得到二进制图像后,寻找轮廓就是从黑色背景中找到白色物体,因此我们要找的对象应是白色,背景应该是黑色。一、寻找、绘制轮廓(一)寻找图像轮廓寻找图像轮廓函数如下:contours,hie
- YOLO系列详解(YOLO1-YOLO5)【实时物体检测算法】
super_journey
YOLO算法深度学习
YOLO是什么?YOLO,全称"YouOnlyLookOnce",是一种流行的实时物体检测算法。这种算法由JosephRedmon等人在2016年的论文"YouOnlyLookOnce:Unified,Real-TimeObjectDetection"中提出。与传统的物体检测方法(例如R-CNN系列)不同,YOLO将物体检测视为一个回归问题,直接从图像中预测物体的边界框和类别。这种方法的主要优点是
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod