数据放这里:
单特征
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
# 读取原始数据
def raw_data(path):
data=pd.read_csv(path,names=['population','profit'])
return data
# 画原始数据
def draw_data(data):
x=data['population']
y=data['profit']
plt.scatter(x,y,s=15)
'''
获取最大值最小值,设置坐标的
print(max(x),min(x))
print(max(y),min(y))
'''
plt.axis([4, 25, -3, 25])
plt.title('raw data')
plt.xlabel('population')
plt.ylabel('profit')
return plt
# 代价函数j
def cost_function(theta,x,y):
j=np.sum(np.power((x.dot(theta)-y),2))/(2*x.shape[0])
return j
# 梯度下降法
def gradient_descent(theta,x,y):
# 定义学习率a和迭代次数epoch
a=0.01
epoch=1000
# cost存放每次修改theta后代价函数的值
cost=[]
for i in range(epoch):
theta=theta-(((x.dot(theta)-y).ravel()).dot(x))*a/x.shape[0]
cost.append(cost_function(theta,x,y))
return theta,cost
# 画出迭代次数和代价函数的关系
def draw_iteration(cost,epoch=1000):
plt.plot(range(epoch),cost)
plt.xlabel('iteration')
plt.ylabel('cost')
plt.show()
# 画出回归方程
def draw_final(theta,data):
plt=draw_data(data)
x=np.arange(4,25,0.01)
y=theta[0]+x*theta[1]
plt.plot(x,y,c='r')
plt.title('final')
plt.show()
# 正规方程法
def normal_equation(theta,x,y):
theta=((np.linalg.inv((x.T).dot(x))).dot(x.T)).dot(y)
return theta
def main():
data=raw_data('venv/lib/dataset/ex1data1.txt')
# print(data.head()) # 检查前几行
plt=draw_data(data)
plt.show()
x=data['population']
y=data['profit']
x=np.c_[np.ones(x.size),x]
theta=np.ones(x.shape[1])
j=cost_function(theta,x,y)
theta,cost=gradient_descent(theta,x,y)
draw_iteration(cost)
draw_final(theta,data)
theta=normal_equation(theta,x,y)
draw_final(theta, data)
main()
'''
结果如下:
原始数据
迭代次数和代价函数的关系
梯度下降法
正规方程法
多特征
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
def raw_data(path):
data=pd.read_csv(path,names=['size','bedroom','price'])
return data
# 数据归一化
def normalize_data(data):
data2=(data-data.mean())/(data.max()-data.min())
return data2
def cost_function(theta,x,y):
j=np.sum(np.power(x.dot(theta)-y,2))/(2*x.shape[0])
return j
def gradient_descent(theta,x,y):
a=0.01
epoch=1000
cost=[]
for i in range(epoch):
theta=theta-(((x.dot(theta)-y).ravel()).dot(x))*a/x.shape[0]
cost.append(cost_function(theta,x,y))
return theta,cost
def draw_iteration(cost,epoch=1000):
plt.plot(np.arange(0,epoch),cost)
plt.title('iteration and cost')
plt.xlabel('iteration')
plt.ylabel('cost')
plt.show()
def normal_equation(theta,x,y):
theta=((np.linalg.inv((x.T).dot(x))).dot(x.T)).dot(y)
return theta
def main():
rawdata=raw_data('venv/lib/dataset/ex1data2.txt')
normaldata=normalize_data(rawdata)
# print(normaldata.head())
x1=normaldata['size']
x2=normaldata['bedroom']
y=normaldata['price']
x=np.c_[np.ones(x1.shape[0]),x1,x2]
theta=np.ones(x.shape[1])
j=cost_function(theta,x,y)
# print(j)
theta,cost=gradient_descent(theta,x,y)
draw_iteration(cost)
# 梯度下降的代价
print(cost_function(theta,x,y))
theta=normal_equation(theta,x,y)
# 正规方程的代价
print(cost_function(theta,x,y))
#0.0156070718918562
#0.007274047883954535
main()
结果如下