RocketMQ学习笔记

RocketMQ 是什么

Github 上关于 RocketMQ 的介绍:
RcoketMQ 是一款低延迟、高可靠、可伸缩、易于使用的消息中间件。具有以下特性:

  1. 支持发布/订阅(Pub/Sub)和点对点(P2P)消息模型
  2. 在一个队列中可靠的先进先出(FIFO)和严格的顺序传递
  3. 支持拉(pull)和推(push)两种消息模式
  4. 单一队列百万消息的堆积能力
  5. 支持多种消息协议,如 JMS、MQTT 等
  6. 分布式高可用的部署架构,满足至少一次消息传递语义
  7. 提供 docker 镜像用于隔离测试和云集群部署
  8. 提供配置、指标和监控等功能丰富的 Dashboard

专业术语

Producer
消息生产者,生产者的作用就是将消息发送到 MQ,生产者本身既可以产生消息,如读取文本信息等。也可以对外提供接口,由外部应用来调用接口,再由生产者将收到的消息发送到 MQ。

Producer Group
生产者组,简单来说就是多个发送同一类消息的生产者称之为一个生产者组。在这里可以不用关心,只要知道有这么一个概念即可。

Consumer
消息消费者,简单来说,消费 MQ 上的消息的应用程序就是消费者,至于消息是否进行逻辑处理,还是直接存储到数据库等取决于业务需要。

Consumer Group
消费者组,和生产者类似,消费同一类消息的多个 consumer 实例组成一个消费者组。

Topic
Topic 是一种消息的逻辑分类,比如说你有订单类的消息,也有库存类的消息,那么就需要进行分类,一个是订单 Topic 存放订单相关的消息,一个是库存 Topic 存储库存相关的消息。

Message
Message 是消息的载体。一个 Message 必须指定 topic,相当于寄信的地址。Message 还有一个可选的 tag 设置,以便消费端可以基于 tag 进行过滤消息。也可以添加额外的键值对,例如你需要一个业务 key 来查找 broker 上的消息,方便在开发过程中诊断问题。

Tag
标签可以被认为是对 Topic 进一步细化。一般在相同业务模块中通过引入标签来标记不同用途的消息。

Broker
Broker 是 RocketMQ 系统的主要角色,其实就是前面一直说的 MQ。Broker 接收来自生产者的消息,储存以及为消费者拉取消息的请求做好准备。

Name Server
Name Server 为 producer 和 consumer 提供路由信息。

RocketMQ 架构

RocketMQ学习笔记_第1张图片
RocketMQ架构

由这张图可以看到有四个集群,分别是 NameServer 集群、Broker 集群、Producer 集群和 Consumer 集群:

  1. NameServer: 提供轻量级的服务发现和路由。 每个 NameServer 记录完整的路由信息,提供等效的读写服务,并支持快速存储扩展。
  2. Broker: 通过提供轻量级的 Topic 和 Queue 机制来处理消息存储,同时支持推(push)和拉(pull)模式以及主从结构的容错机制。
  3. Producer:生产者,产生消息的实例,拥有相同 Producer Group 的 Producer 组成一个集群。
  4. Consumer:消费者,接收消息进行消费的实例,拥有相同 Consumer Group 的
    Consumer 组成一个集群。

简单说明一下图中箭头含义,从 Broker 开始,Broker Master1 和 Broker Slave1 是主从结构,它们之间会进行数据同步,即 Date Sync。同时每个 Broker 与
NameServer 集群中的所有节
点建立长连接,定时注册 Topic 信息到所有 NameServer 中。

Producer 与 NameServer 集群中的其中一个节点(随机选择)建立长连接,定期从 NameServer 获取 Topic 路由信息,并向提供 Topic 服务的 Broker Master 建立长连接,且定时向 Broker 发送心跳。Producer 只能将消息发送到 Broker master,但是 Consumer 则不一样,它同时和提供 Topic 服务的 Master 和 Slave
建立长连接,既可以从 Broker Master 订阅消息,也可以从 Broker Slave 订阅消息。

RocketMQ 集群部署模式

单 master 模式

也就是只有一个 master 节点,称不上是集群,一旦这个 master 节点宕机,那么整个服务就不可用,适合个人学习使用。

多 master 模式

多个 master 节点组成集群,单个 master 节点宕机或者重启对应用没有影响。
优点:所有模式中性能最高
缺点:单个 master 节点宕机期间,未被消费的消息在节点恢复之前不可用,消息的实时性就受到影响。
注意:使用同步刷盘可以保证消息不丢失,同时 Topic 相对应的 queue 应该分布在集群中各个节点,而不是只在某各节点上,否则,该节点宕机会对订阅该 topic 的应用造成影响。

多 master 多 slave 异步复制模式

在多 master 模式的基础上,每个 master 节点都有至少一个对应的 slave。master
节点可读可写,但是 slave 只能读不能写,类似于 mysql 的主备模式。
优点: 在 master 宕机时,消费者可以从 slave 读取消息,消息的实时性不会受影响,性能几乎和多 master 一样。
缺点:使用异步复制的同步方式有可能会有消息丢失的问题。

多 master 多 slave 同步双写模式

同多 master 多 slave 异步复制模式类似,区别在于 master 和 slave 之间的数据同步方式。
优点:同步双写的同步模式能保证数据不丢失。
缺点:发送单个消息 RT 会略长,性能相比异步复制低10%左右。

刷盘策略:同步刷盘和异步刷盘(指的是节点自身数据是同步还是异步存储)
同步方式:同步双写和异步复制(指的一组 master 和 slave 之间数据的同步)
注意:要保证数据可靠,需采用同步刷盘和同步双写的方式,但性能会较其他方式低。

消息类型

普通消息
普通消息也叫做无序消息,简单来说就是没有顺序的消息,producer 只管发送消息,consumer 只管接收消息,至于消息和消息之间的顺序并没有保证,可能先发送的消息先消费,也可能先发送的消息后消费。

举个简单例子,producer 依次发送 order id 为 1、2、3 的消息到 broker,consumer 接到的消息顺序有可能是 1、2、3,也有可能是 2、1、3 等情况,这就是普通消息。

因为不需要保证消息的顺序,所以消息可以大规模并发地发送和消费,吞吐量很高,适合大部分场景。

有序消息
有序消息就是按照一定的先后顺序的消息类型。

举个例子来说,producer 依次发送 order id 为 1、2、3 的消息到 broker,consumer 接到的消息顺序也就是 1、2、3 ,而不会出现普通消息那样的 2、1、3 等情况。

那么有序消息是如何保证的呢?我们都知道消息首先由 producer 到 broker,再从 broker 到 consumer,分这两步走。那么要保证消息的有序,势必这两步都是要保证有序的,即要保证消息是按有序发送到 broker,broker 也是有序将消息投递给 consumer,两个条件必须同时满足,缺一不可。进一步还可以将有序消息分成

  • 全局有序消息
  • 局部有序消息

之前我们讲过,topic 只是消息的逻辑分类,内部实现其实是由 queue 组成。当 producer 把消息发送到某个 topic 时,默认是会消息发送到具体的 queue 上。
举个例子,producer 发送 order id 为 1、2、3、4 的四条消息到 topicA 上,假设 topicA 的 queue 数为 3 个(queue0、queue1、queue2),那么消息的分布可能就是这种情况,id 为 1 的在 queue0,id 为 2 的在 queue1,id 为 3 的在 queue2,id 为 4 的在 queue0。同样的,consumer 消费时也是按 queue 去消费,这时候就可能出现先消费 1、4,再消费 2、3,和我们的预期不符。那么我们如何实现 1、2、3、4 的消费顺序呢?道理其实很简单,只需要把订单 topic 的 queue 数改为 1,如此一来,只要 producer 按照 1、2、3、4 的顺序去发送消息,那么 consumer 自然也就按照 1、2、3、4 的顺序去消费,这就是全局有序消息。

由于一个 topic 只有一个 queue ,即使我们有多个 producer 实例和 consumer 实例也很难提高消息吞吐量。就好比过独木桥,大家只能一个挨着一个过去,效率低下。

那么有没有吞吐量和有序之间折中的方案呢?其实是有的,就是局部有序消息。

我们知道订单消息可以再细分为订单创建、订单付款、订单完成等消息,这些消息都有相同的 order id。同时,也只有按照订单创建、订单付款、订单完成的顺序去消费才符合业务逻辑。但是不同 order id 的消息是可以并行的,不会影响到业务。这时候就常见做法就是将 order id 进行处理,将 order id 相同的消息发送到 topicB 的同一个 queue,假设我们 topicB 有 2 个 queue,那么我们可以简单的对 id 取余,奇数的发往 queue0,偶数的发往 queue1,消费者按照 queue 去消费时,就能保证 queue0 里面的消息有序消费,queue1 里面的消息有序消费。

由于一个 topic 可以有多个 queue,所以在性能比全局有序高得多。假设 queue 数是 n,理论上性能就是全局有序的 n 倍,当然 consumer 也要跟着增加才行。在实际情况中,这种局部有序消息是会比全局有序消息用的更多。

延时消息
延时消息,简单来说就是当 producer 将消息发送到 broker 后,会延时一定时间后才投递给 consumer 进行消费。

RcoketMQ的延时等级为:1s,5s,10s,30s,1m,2m,3m,4m,5m,6m,7m,8m,9m,10m,20m,30m,1h,2h。level=0,表示不延时。level=1,表示 1 级延时,对应延时 1s。level=2 表示 2 级延时,对应5s,以此类推。

这种消息一般适用于消息生产和消费之间有时间窗口要求的场景。比如说我们网购时,下单之后是有一个支付时间,超过这个时间未支付,系统就应该自动关闭该笔订单。那么在订单创建的时候就会就需要发送一条延时消息(延时15分钟)后投递给 consumer,consumer 接收消息后再对订单的支付状态进行判断是否关闭订单。

设置延时非常简单,只需要在Message设置对应的延时级别即可。

消息发送方式

同步发送
简单来说,同步发送就是指 producer 发送消息后,会在接收到 broker 响应后才继续发下一条消息的通信方式。
由于这种同步发送的方式确保了消息的可靠性,同时也能及时得到消息发送的结果,故而适合一些发送比较重要的消息场景,比如说重要的通知邮件、营销短信等等。在实际应用中,这种同步发送的方式还是用得比较多的。
异步发送
接着就是异步发送,异步发送是指 producer 发出一条消息后,不需要等待 broker 响应,就接着发送下一条消息的通信方式。需要注意的是,不等待 broker 响应,并不意味着 broker 不响应,而是通过回调接口来接收 broker 的响应。所以要记住一点,异步发送同样可以对消息的响应结果进行处理。
由于异步发送不需要等待 broker 的响应,故在一些比较注重 RT(响应时间)的场景就会比较适用。比如,在一些视频上传的场景,我们知道视频上传之后需要进行转码,如果使用同步发送的方式来通知启动转码服务,那么就需要等待转码完成才能发回转码结果的响应,由于转码时间往往较长,很容易造成响应超时。此时,如果使用的是异步发送通知转码服务,那么就可以等转码完成后,再通过回调接口来接收转码结果的响应了。
单向发送
单向发送,见名知意,就是一种单方向通信方式,也就是说 producer 只负责发送消息,不等待 broker 发回响应结果,而且也没有回调函数触发,这也就意味着 producer 只发送请求不等待响应结果。
由于单向发送只是简单地发送消息,不需要等待响应,也没有回调接口触发,故发送消息所耗费的时间非常短,同时也意味着消息不可靠。所以这种单向发送比较适用于那些耗时要求非常短,但对可靠性要求并不高的场景,比如说日志收集。

下面通过一张表格,简单总结一下同步发送、异步发送和单向发送的特点。

发送方式 发送TPS 发送结果响应 可靠性
同步发送 不丢失
异步发送 不丢失
单向发送 没有 可能丢失

可以看到,从发送 TPS 来看,由于单向发送不需要等待响应也没有回调接口触发,发送速度非常快,一般都是微秒级的,在消息体大小一样的情况下,其发送 TPS 最大。而同步发送,需要等待响应结果的返回,受网络状况的影响较大,故发送 TPS 就比较小。异步发送不等待响应结果,发送消息时几乎不受网络的影响,故相比同步发送来说,其发送 TPS 要大得多。

关于可靠性,大家需要牢记前面提过的,异步发送并不意味着消息不可靠,异步发送也是会接收到响应结果,也能对响应结果进行处理。即使发送失败,也可以通过一些补偿手段进行消息重发。和同步发送比起来,异步发送的发送 TPS 更大,更适合那些调用链路较长的一些场景。在实际使用中,同步发送和异步发送都是较为常用的两种方式,大家要视具体业务场景进行合理地选择。

消费模式

首先明确一点,RocketMQ 是基于发布订阅模型的消息中间件。所谓的发布订阅就是说,consumer 订阅了 broker 上的某个 topic,当 producer 发布消息到 broker 上的该 topic 时,consumer 就能收到该条消息。

之前我们讲过 consumer group 的概念,即消费同一类消息的多个 consumer 实例组成一个消费者组,也可以称为一个 consumer 集群,这些 consumer 实例使用同一个 group name。需要注意一点,除了使用同一个 group name,订阅的 tag 也必须是一样的,只有符合这两个条件的 consumer 实例才能组成 consumer 集群。

集群消费
当 consumer 使用集群消费时,每条消息只会被 consumer 集群内的任意一个 consumer 实例消费一次。举个例子,当一个 consumer 集群内有 3 个consumer 实例(假设为consumer 1、consumer 2、consumer 3)时,一条消息投递过来,只会被consumer 1、consumer 2、consumer 3中的一个消费。

同时记住一点,使用集群消费的时候,consumer 的消费进度是存储在 broker 上,consumer 自身是不存储消费进度的。消息进度存储在 broker 上的好处在于,当你 consumer 集群是扩大或者缩小时,由于消费进度统一在broker上,消息重复的概率会被大大降低了。

注意:在集群消费模式下,并不能保证每一次消息失败重投都投递到同一个 consumer 实例。

广播消费
当 consumer 使用广播消费时,每条消息都会被 consumer 集群内所有的 consumer 实例消费一次,也就是说每条消息至少被每一个 consumer 实例消费一次。举个例子,当一个 consumer 集群内有 3 个 consumer 实例(假设为 consumer 1、consumer 2、consumer 3)时,一条消息投递过来,会被 consumer 1、consumer 2、consumer 3都消费一次。

与集群消费不同的是,consumer 的消费进度是存储在各个 consumer 实例上,这就容易造成消息重复。还有很重要的一点,对于广播消费来说,是不会进行消费失败重投的,所以在 consumer 端消费逻辑处理时,需要额外关注消费失败的情况。

虽然广播消费能保证集群内每个 consumer 实例都能消费消息,但是消费进度的维护、不具备消息重投的机制大大影响了实际的使用。因此,在实际使用中,更推荐使用集群消费,因为集群消费不仅拥有消费进度存储的可靠性,还具有消息重投的机制。而且,我们通过集群消费也可以达到广播消费的效果。

使用集群消费模拟广播消费
如果业务上确实需要使用广播消费,那么我们可以通过创建多个 consumer 实例,每个 consumer 实例属于不同的 consumer group,但是它们都订阅同一个 topic。举个例子,我们创建 3 个 consumer 实例,consumer 1(属于consumer group 1)、consumer 2(属于 consumer group 2)、consumer 3(属于consumer group 3),它们都订阅了 topic A ,那么当 producer 发送一条消息到 topic A 上时,由于 3 个consumer 属于不同的 consumer group,所以 3 个consumer都能收到消息,也就达到了广播消费的效果了。 除此之外,每个 consumer 实例的消费逻辑可以一样也可以不一样,每个consumer group还可以根据需要增加 consumer 实例,比起广播消费来说更加灵活。

消息过滤

说到消息过滤,就不得不说到 tag。没错,就是我们之前在专业术语中提到过的 tag。也称为消息标签,用来标记 Topic 下的不同用途的消息。

在 RocketMQ 中消费者是可以按照 Tag 对消息进行过滤。举个电商交易场景的例子,用户下完订单之后,在后台会产生一系列的消息,比如说订单消息、支付消息和物流消息。假设这些消息都发送到 Topic 为 Trade 中,同时用 tag 为 order 来标记订单消息,用 tag 为 pay 来标记支付消息,用 tag 为 logistics 来标记物流消息。需要支付消息的支付系统(相当于一个 consumer)订阅 Trade 中 tag 为 pay 的消息,此时,broker 则只会把 tag 为 pay 的消息投递给支付系统。而如果是一个实时计算系统,它可能需要接收所有和交易相关的消息,那么只要它订阅 Trade 中 tag 为 order、pay、logistics 的消息,broker 就会把带有这些 tag 的消息投递给实时计算系统。

对于消息分类,我们可以选择创建多个 Topic 来区分,也可以选择在同一个 Topic 下创建多个 tag 来区分。这两种方式都是可行的,但是一般情况下,不同的 Topic 之间的消息是没有什么必然联系的,使用 tag 来区分同一个 Topic 下相互关联的消息则更加合适一些。

在实际使用中,消息过滤可以帮助我们只消费我们所需要的消息,这是在broker端就帮我们处理好的,大大减少了在 consumer 端的消息过滤处理,一方面减少了代码量,另一方面更减少了不必要消息的网络传输消耗。

消息重试

首先明确之前说过的,消息重试只针对集群消费模式,广播消费没有消息重试的特性,消费失败之后,只会继续消费下一条消息。这也是为什么我们一再强调,推荐大家使用集群消费模式,其消息重试的特性能给开发者带来极大的方便。

那么什么是消息重试呢?简单来说,就是当消费者消费消息失败后,broker 会重新投递该消息,直到消费成功。在 RocketMQ 中,当消费者使用集群消费模式时,消费者接收到消息并进行相应的逻辑处理之后,最后都要返回一个状态值给 broker。这样 broker 才知道是否消费成功,需不需要重新投递消息。也就是说,我们可以通过设置返回的状态值来告诉 broker 是否重新投递消息。

到这里,可能大家会有一个疑问,那如果这条消息本身就是一条脏数据,就算你消费 100 次也不会消费成功,难道还是一直去重试嘛?其实 RocketMQ 并不会无限制地重试下去,默认每条消息最多重试 16 次,而每次重试的间隔时间如下表所示:

第几次重试 每次重试间隔时间
1 10 秒
2 30 秒
3 1 分钟
4 2 分钟
5 3 分钟
6 4 分钟
7 5 分钟
8 6 分钟
9 7 分钟
10 8 分钟
11 9 分钟
12 10 分钟
13 20 分钟
14 30 分钟
15 1 小时
16 2 小时

那么如果消息重试 16 次之后还是消费失败怎么办呢?那么消息就不会再投递给消费者,而是将消息放到相对应的死信队列中。这时候我们就需要对死信队列的消息做一些人工补偿处理,因为这些消息可能本身就有问题,也有可能和消费逻辑调用的服务有关等,所以需要人工判断之后再进行处理。

到这里不知道大家有没有一个疑问,那就是什么样的情况才叫消费失败呢?可以分为 3 种情况:

  1. 返回 ConsumeConcurrentlyStatus.RECONSUME_LATER
  2. 返回 null
  3. 抛出异常

前两种情况都比较好理解,就是前面说过的设置状态值,也就是说,只需要消费者返回 ConsumeConcurrentlyStatus.RECONSUME_LATER 或者 null,就相当于告诉 broker 说,这条消息我消费失败了,你给我重新投递一次。而对于抛出异常这种情况,只要在你处理消费逻辑的地方抛出了异常,那么 broker 也重新投递这条消息。注意一点,如果是被捕获的异常,则不会进行消息重试。

消息重试,保证了消费消息的容错性,即使消费失败,也不需要开发者自己去编写代码来做补偿,大大提高了开发效率,同时也是 RocketMQ 相较于其他 MQ 的一个非常好的特性。

消息幂等

首先什么是消费幂等呢?简单来说就是对于一条消息的处理结果,不管这条消息被处理多少次,最终的结果都一样。比如说,你收到一条消息是要更新一个商品的价格为 6.8 元,那么当这条消息执行 1 次,还是执行 100 次,最终在数据库里的该商品价格就是 6.8 元,这就是所谓的幂等。 那么为什么消费需要幂等呢?因为在实际使用中,尤其在网络不稳定的情况下,RocketMQ 的消息有可能会出现重复,包括两种情况:

  1. 发送时消息重复;
  2. 投递时消息重复;

第一种情况是生产者发送消息的场景,消息已成功发送到 broker ,但是此时可能发生网络闪断或者生产者宕机了,导致 broker 发回的响应失败。这时候生产者由于没有收到响应,认为消息发送失败,于是尝试再次发送消息给 broker。这样一来,broker 就会再收到一条一摸一样内容的消息,最终造成了消费者也收到两条内容一摸一样的消息。

第二种情况是消费者消费消息的场景,消息已投递到消费者并完成消费逻辑处理,当消费者给 broker 反馈消费状态时可能发生网络闪断。broker 收不到消费者的消费状态,为了保证至少消费一次的语义,broker 将在网络恢复后再次尝试投递之前已经被处理过的消息,最终造成消费者收到两条内容一摸一样的消息。

当然对于一些允许消息重复的场景,大可以不必关心消费幂等。但是对于那些不允许消息重复的业务场景来说,处理建议就是通过业务上的唯一标识来作为幂等处理的依据。

消费幂等主要是针对那些不允许消息重复的场景,应该说大部分 MQ 都需要幂等处理,这属于代码逻辑或者说业务上的需要,最好的处理方式就是前面所说的根据业务上唯一标识来作为幂等处理的依据。

你可能感兴趣的:(RocketMQ学习笔记)