Python利用Scrapy爬取智联招聘和前程无忧的招聘数据

爬虫起因

  前面两个星期,利用周末的时间尝试和了解了一下Python爬虫,紧接着就开始用Scrapy框架做了一些小的爬虫,不过,由于最近一段时间的迷茫,和处于对职业生涯的规划。以及对市场需求的分析,我通过网上查阅资料。对比较大的前程无忧和智联招聘进行了数据爬取。
  这里我们以智联招聘为例做一些讲解。

前期准备

首先我在我自己做爬虫之前就已经规划好了我需要爬取什么数据,并且创建了数据库表,并提前对网页内容有大概的了解。其次处于对数据分析的考虑,我对我比较关系的字段例如,经验,学历,薪资等都要求尽量能够爬取到。最后,通过书本以及网络资源等各种工具了解Scrapy,正则表达式,Xpath,BeautifulSoup等各种知识,为后面做好爬虫打下了基础。

实战

在本次小练习中,我们主要会用到,piplines,items,和我们自己新建的Spider类,
items是针对实体的,与数据库表中最好具有对应关系,代码如下:

import scrapy


class ZhaopinItem(scrapy.Item):
    jobname = scrapy.Field()
    salary = scrapy.Field()
    experience = scrapy.Field()
    address = scrapy.Field()
    comany_name = scrapy.Field()
    head_count = scrapy.Field()
    education_require = scrapy.Field()
    comany_size = scrapy.Field()
    job_require =scrapy.Field()
    release_date = scrapy.Field()

piplines在本例中主要是对items进行数据操作的。代码如下:

import pymysql
from zhaopin import settings

class ZhaopinPipeline(object):
    def __init__(self, ):
        self.conn = pymysql.connect(
            host=settings.MYSQL_HOST,
            db=settings.MYSQL_DBNAME,
            user=settings.MYSQL_USER,
            passwd=settings.MYSQL_PASSWORD,
            charset='utf8',  # 编码要加上,否则可能出现中文乱码问题
            use_unicode=False)
        self.cursor = self.conn.cursor()

    def process_item(self, item, spider):
        self.insertData(item)
        return item

    def insertData(self, item):
        sql = "insert into shenzhen(jobname,salary,company_name,job_require,address,experience,company_size,head_count,education_require,release_date) VALUES(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s);"
        params = (item['jobname'],item['salary'],item['comany_name'],item['job_require'],item['address'],item['experience'],item['comany_size'],item['head_count'],item['education_require'],item['release_date'])
        self.cursor.execute(sql, params)
        self.conn.commit()

最后最为主要的是,数据的获取以及解析,代码如下。

from zhaopin.items import ZhaopinItem
from scrapy import Spider,Request
from bs4 import BeautifulSoup
import  re
class ZhaopinSpider(Spider):
    name = 'zhaopin'

    allowed_domains = ['www.zhaopin.com']
    start_urls = ['http://www.zhaopin.com/']
    #start_urls = ['http://sou.zhaopin.com/jobs/searchresult.ashx?jl=%E4%B8%8A%E6%B5%B7&kw=java%E5%B7%A5%E7%A8%8B%E5%B8%88&sm=0&sg=720f662a0e894031b9b072246ac2f919&p=1']

    def start_requests(self):
        #for num in (1,60):
        url='http://sou.zhaopin.com/jobs/searchresult.ashx?jl=%E6%B7%B1%E5%9C%B3&kw=java%E5%B7%A5%E7%A8%8B%E5%B8%88&sm=0&isadv=0&sg=cc9fe709f8cc4139afe2ad0808eb7983&p=42'
            #.format(num)
        #yield Request(url,callback=self.parse)
        yield Request(url,callback=self.parse)

    def parse(self, response):
        #self.log('page url is ' + response.url)
        wbdata = response.text
        soup = BeautifulSoup(wbdata, 'lxml')
        job_name = soup.select("table.newlist > tr > td.zwmc > div > a:nth-of-type(1)")
        salary = soup.select("table.newlist > tr > td.zwyx")
        #company_name = soup.select("table.newlist > tr > td.gsmc > div > a:nth-of-type(2)")
        times = soup.select("table.newlist > tr > td.gxsj > span")
        for name,salary,time in zip(job_name,salary,times):
            item = ZhaopinItem()
            item["jobname"] = name.get_text()
            url= name.get('href')
            #print("职位"+name.get_text()+"工资"+salary.get_text()+"发布日期"+time.get_text()+"连接"+url)
            item["salary"] = salary.get_text()
            item["release_date"] = time.get_text()
            # item["comany_name"] = company     _name.get_text()
            #yield item

            yield Request(url=url, meta={"item": item}, callback=self.parse_moive,dont_filter=True)



    def parse_moive(self, response):
        #item = ZhaopinItem()
        jobdata = response.body
        require_data = response.xpath(
            '//body/div[@class="terminalpage clearfix"]/div[@class="terminalpage-left"]/div[@class="terminalpage-main clearfix"]/div[@class="tab-cont-box"]/div[1]/p').extract()
        require_data_middle = ''
        for i in require_data:
            i_middle = re.sub(r'<.*?>', r'', i, re.S)
            require_data_middle = require_data_middle + re.sub(r'\s*', r'', i_middle, re.S)
        jobsoup = BeautifulSoup(jobdata, 'lxml')
        item = response.meta['item']
        item['job_require'] = require_data_middle
        item['experience'] = jobsoup.select('div.terminalpage-left strong')[4].text.strip()
        item['comany_name']  = jobsoup.select('div.fixed-inner-box h2')[0].text
        item['comany_size']  = jobsoup.select('ul.terminal-ul.clearfix li strong')[8].text.strip()
        item['head_count']  = jobsoup.select('div.terminalpage-left strong')[6].text.strip()
        item['address'] = jobsoup.select('ul.terminal-ul.clearfix li strong')[11].text.strip()
        item['education_require'] = jobsoup.select('div.terminalpage-left strong')[5].text.strip()
        yield item

当然最后还需要对一些基础的配置在setting文件中进行设置,如下

ROBOTSTXT_OBEY = False

ITEM_PIPELINES = {
    'zhaopin.pipelines.ZhaopinPipeline':300
}

MYSQL_HOST = '127.0.0.1'
MYSQL_DBNAME = 'zhaopin'     # 数据库名
MYSQL_USER = 'root'         # 数据库用户
MYSQL_PASSWORD = '123456'   # 数据库密码

最后,运行成功会获得如下结果:


Python利用Scrapy爬取智联招聘和前程无忧的招聘数据_第1张图片
这里写图片描述

后记

后面如果我开发了数据分析相关的技能包,可能还会对这里的数据进行分析,到时候会将分析的一些有趣的东西分析出来,

代码请戳这里

你可能感兴趣的:(Python利用Scrapy爬取智联招聘和前程无忧的招聘数据)