- 共筑智慧城市新生态!YashanDB与荣科科技完成兼容互认证
科技圈快讯
oracle数据库
近日,深圳计算科学研究院的崖山数据库系统YashanDB与荣科科技股份有限公司的智慧工程移动管理平台V1.0与不动产智能管理系统V1.0成功完成了兼容性互认证,标志着双方在智慧城市建设领域实现关键突破,以国产化高性能数据库技术为核心,为工程建设与不动产管理领域提供安全可控、高效稳定的数字化解决方案。在兼容性互认证过程中,双方针对功能、性能、兼容性以及稳定性等关键指标进行了多轮严格测试,验证了Ya
- 【Linux】Linux下调试器gdb的使用
安 度 因
Linuxlinux运维服务器测试工具调试
作者主页:@安度因学习社区:StackFrame专栏链接:Linux文章目录一、前言二、铺垫三、指令集和使用1、指令集2、演示四、结语如果无聊的话,就来逛逛我的博客栈吧!一、前言前几篇Linux博客中,我们分别学习了与编辑、编译、自动化构建代码、上传代码的工具。而今天,我们将学习最后一个工具——Linux下的调试器gdb
- YOLOv12优化:图像去噪 | AAAI2025 Transformer |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力
AI小怪兽
YOLOv12魔术师YOLOtransformer深度学习人工智能python
提出了一种基于Transformer的盲点网络(TBSN)架构,通过分析和重新设计Transformer运算符以满足盲点要求。TBSN遵循扩张BSN的架构原则,并结合空间和通道自注意力层来增强网络能力。如何使用:1)结合C3k2二次创新使用;2)结合A2C2f二次创新使用;亮点包括:1.提出了一种新的基于Transformer的盲点网络(TBSN)架构;2.引入了知识蒸馏策略来提高计算效率;3.在
- ACI EP Learning Whitepaper 1. ACI EP组件
m0_54931486
思科ACI网络思科ACIEndpointACIfabricNexusEP学习
1.ACIEndpointACI网络架构的Endpoint表整合了传统MAC地址表和ARP表的功能。其核心机制是通过硬件层直接学习数据包的源MAC地址与IP地址映射关系,摒弃了传统ARP协议依赖广播请求获取下一跳MAC地址的模式。这种设计优化体现在两方面:1)减少控制面ARP流量处理带来的资源消耗;2)基于终端实际流量即可实时感知主机IP/MAC地址的拓扑迁移,无需依赖GARP通告即可实现终端移动
- 什么是MCP?看不懂你打我
X.Cristiano
深度学习MCP
什么是MCP?MCP是一种协议,它实现了大模型资源调用的标准化。千百年来,随着人类社会的发展,标准化的进程不断推进。大模型与外部资源的对接同样需要标准化,MCP正是为此而生!接下来的文字,或许,将帮助你奶奶明白MCP对于她意味着什么。2011年,微信发布。想象一下,你奶奶刚开始用微信。那时,还没有小程序。她的体验或许是这样的:第一个月,她惊喜地发现微信能订电影票了!再过一个月,她发现微信又能约出租
- 8、Python 字符串处理与正则表达式实战指南
wolf犭良
pythonpython正则表达式
Python字符串处理与正则表达式实战指南文章概述本文深入探讨Python字符串处理核心方法与正则表达式实战技巧,涵盖字符串编码转换、分割替换、正则表达式语法精髓,并通过日志解析、数据清洗等真实场景案例展示高阶应用。最后提供10道阶梯式练习题(附完整答案代码),助你从基础到进阶全面掌握文本处理技能。一、字符串处理核心三剑客1.1编码转换(encode/decode)text="中文文本"utf8_
- deepseek api参数详解
孽小倩
大语言模型pythonjava前端人工智能deepseek
deepseek的参数与openai保持兼容,所以openai能用的参数deepseek都可以使用,以下是常用的参数介绍。在使用Deepseek/OpenAI的PythonAPI时,最常用的API端点是chat/completions,用于调用deepseek生成文本对话内容。以下是openai.ChatCompletion.create()方法的主要参数及其作用:1.model作用:指定使用的模
- 数智读书笔记系列021《大数据医疗》:探索医疗行业的智能变革
Allen_Lyb
数智读书笔记大数据健康医疗人工智能python
一、书籍介绍《大数据医疗》由徐曼、沈江、余海燕合著,由机械工业出版社出版。徐曼是南开大学商学院副教授,在大数据驱动的智能决策研究领域颇有建树,尤其在大数据驱动的医疗与健康决策方面有着深入研究,曾获天津优秀博士论文、教育部博士研究生新人奖。沈江等作者也在相关学术和实践领域有着丰富的经验和深厚的专业知识。这本书系统且深入地探讨了大数据技术在医疗领域的应用与变革,对推动医疗行业的智能化发展具有重要的理论
- 国家标准与行业标准:差异剖析与协同共进
德为先科技
标准执行标准国家标准大数据业界资讯
在社会经济与产业发展进程中,标准是保障产品质量、规范市场秩序以及促进技术进步的关键要素。其中,国家标准和行业标准扮演着极为重要的角色,它们既有紧密联系,又存在显著区别。深入了解二者差异,对企业生产、行业发展乃至国家经济运行意义深远。一、定义与制定主体国家标准是指由国家标准化管理机构批准发布,在全国范围内统一适用的标准。它体现了国家在某个领域的整体意志与基本要求,旨在确保全国范围内的产品、服务等具备
- 无人机喊话系统:空中扩音器的科技密码!
云卓SKYDROID
无人机科技人工智能云卓科技科普高科技
一、技术核心:空中声波系统的三重架构1.声源处理中枢支持双模输入:麦克风实时采集与数字音频导入搭载DSP数字信号处理器,实现动态降噪(信噪比>70dB)自适应EQ调节,针对不同场景优化频响曲线(如灾害现场增强低频穿透力)2.定向声场发生器采用相控阵扬声器技术,波束角可调范围15°-60°声压级最高达125dB(相当于喷气式飞机起飞噪音)有效投射距离300米(静风环境下)3.飞控集成平台专用减震支架
- 支付宝MAU全解析:小程序生态的核心指标
ckx666666cky
小程序性能优化支付宝搜索引擎支付宝mau支付宝mau优化
支付宝作为中国领先的移动支付和生活服务平台,其月活跃用户数(MonthlyActiveUsers,简称MAU)是衡量平台活力和商业价值的关键指标。MAU不仅反映了用户对平台的黏性和活跃度,还直接影响支付宝的商业潜力和市场竞争力。支付宝MAU概况截至最近公开数据,支付宝的MAU已突破9亿,这一庞大的用户基础为支付宝小程序生态提供了强大的流量支持。与微信支付等竞争对手相比,支付宝用户群体具有更强的消费
- CAN协议简介:从基础到高级应用
New_Teen
嵌入式硬件学习笔记嵌入式硬件物联网
文章目录引言一、CAN协议概述1.1基本特性1.2典型应用场景二、物理层解析2.1信号规范2.2网络拓扑三、数据链路层机制3.1帧类型对比3.2非破坏性仲裁3.3错误处理机制四、帧结构详解4.1标准数据帧结构4.2扩展帧结构五、高级特性5.1CANFD协议增强5.2报文过滤机制六、同步与定时6.1位时间组成6.2同步规则七、开发实践要点结语引言在现代工业控制和汽车电子领域,CAN(Controll
- 【AI大模型应用开发】RAG-Fusion框架:忘掉 RAG,未来是 RAG-Fusion
同学小张
大模型人工智能笔记chatgptagiembeddingRAGprompt
大家好,我是同学小张,+v:jasper_8017一起交流,持续学习C++进阶、OpenGL、WebGL知识和AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,共同学习和进步。RAG目前很火,但是也有一些不足的地方。有不足就有改进方法。本文我们来看一个方法:RAG-Fusion,理解其原理,并看一下其实现源码。文章目录0.RAG的不足1.RAG-Fusion原理概述2.步骤拆解与代码示例2.1
- 端到端数字人生产线:如何实现日均3000条视频的工业级输
井云AI
人工智能
端到端数字人生产线:基于DAG引擎如何实现日均3000条视频的工业级输出?一、行业困局:短视频生产的效率魔咒2025年《内容科技白皮书》数据显示:83%企业因人工剪辑效率低下错失流量红利(MCN机构月损500万+)6小时/条传统视频从脚本到成片的平均耗时(行业调研)15%误判率人工审核导致优质内容被误杀(教育品牌实测)这些数字背后,是内容生产领域的三重矛盾:质量、效率与合规的不可兼得。二、技术破局
- 图像识别技术与应用课后总结(20)
一元钱面包
人工智能
图像分割概念图像分割是把图像中不同像素划分到不同类别,预测目标轮廓,属于细粒度分类。比如将图像里不同物体、背景等区分开来,就像把一幅画里的各个元素精准归类。应用场景人像抠图:能精准分离人物和背景,用于图片编辑、影视制作等,比如去除照片背景换背景。医学组织提取:在医学影像(如CT、MRI图像)中分离出不同组织,辅助疾病诊断、手术规划等。遥感图像分析:分析卫星或航空遥感图像时,区分土地、植被、建筑等不
- AI赋能视频创作:蓝耘MaaS与海螺AI技术的深度融合
云边有个稻草人
热门文章人工智能音视频图片生成视频蓝耘智算蓝耘MaaS平台体验海螺AI高效视频渲染和优化
云边有个稻草人-CSDN博客目录一、蓝耘MaaS平台概述(1)平台的模块化设计(2)蓝耘MaaS的灵活性与扩展性(3)蓝耘MaaS的安全性与隐私保护二、海螺AI视频模型简介(1)海螺AI的核心技术(2)海螺AI的视频生成流程(3)海螺AI的应用场景三、在蓝耘Maas平台如何使用海螺AI生成视频(1)注册蓝耘平台账号(2)点击MaaS平台(3)点击视觉模型并选择l2V-01视频模型(4)体验图片生成
- 架构设计的灵魂交响曲:系统设计各维度的深度解析与实战指南
领码科技
IT职场技能篇架构设计系统设计功能模块模型驱动协同设计
引言:系统设计的背景与重要性在快速变化的技术环境中,数字化转型成为企业生存与发展的核心驱动力。系统设计能力不仅是技术团队的核心竞争力,也是推动业务创新和提升整体效率的关键因素。根据Gartner的研究,超过70%的数字化转型项目未能实现预期结果,这强调了有效系统设计的重要性。企业需通过科学合理的系统设计来应对市场变化、用户需求和技术发展,从而实现更高的业务价值。文章将深入探讨架构设计的各个维度,通
- 滑块式分拣优势
骞途
笔记人工智能经验分享
高速滑块式分拣机是一种智能物流输送设备,可引导和分拣中型货物、包袋、纸箱。与普通分拣机不同的是,双向滑块使货物能够在分拣机两侧卸下,提高了空间利用率,同时增大了设计灵活性。超高速、高性能,高可靠性,灵活配置。双向、轻柔分拣。采用搭锁/脱开滑块,滚柱轴承精确。更换损坏的滑块不需要拆下板,分拣机控制人员可以使用标准软件包快速、方便地安装。1.性能参数滑块式分拣适用于纸箱、周转箱及其他不规则形状的物品,
- 移除元素(C语言)
Charon424
leetcode简单题c语言算法数据结构
题目:给你一个数组nums和一个值val,你需要原地移除所有数值等于val的元素。元素的顺序可能发生改变。然后返回nums中与val不同的元素的数量。假设nums中不等于val的元素数量为k,要通过此题,您需要执行以下操作:更改nums数组,使nums的前k个元素包含不等于val的元素。nums的其余元素和nums的大小并不重要。返回k。用户评测:评测机将使用以下代码测试您的解决方案:int[]n
- jieba库词频统计_jieba分词器(应用及字典的补充)及文档高频词提取实战
袁圆园建建
jieba库词频统计
jieba分词器是Python中最好的中文分词组件,本文讲解一下jieba分词器及其应用。1、jieba分词器的分词模式jieba分词器提供了三种常用的分词模式1、精确模式:将句子按照最精确的方法进行切分,适合用于进行文本分析;2、全模式:将句子当中所有可以成词的词语都扫描出来,分词速度很快但容易产生歧义;3、搜索引擎模式:在精确模式分词的基础上,将长的句子再次进行切分,提高召回率,适用于搜索引擎
- 【存储中间件】Redis核心技术与实战(六):Redis的设计与实现(缓存淘汰算法、过期策略与惰性删除)
道友老李
#Redis核心技术与实战架构师进阶-存储中间件缓存中间件redis
文章目录Redis的设计与实现缓存淘汰算法maxmemoryNoevictionvolatile-lruvolatile-ttlvolatile-randomallkeys-lruallkeys-randomLRU算法近似LRU算法LFU算法为什么Redis要缓存系统时间戳过期策略和惰性删除过期惰性删除lazyfree个人主页:道友老李欢迎加入社区:道友老李的学习社区Redis的设计与实现缓存淘汰
- Hive 实际应用场景及对应SQL示例
小技工丨
大数据随笔hivesqlhadoop大数据数据仓库
Hive实际应用场景及对应SQL示例一、日志分析场景**场景说明:**处理大规模日志数据(如Web访问日志),分析用户行为或系统运行状态。SQL示例:--统计每日UV(用户访问量)SELECTdate,COUNT(DISTINCTuser_id)ASdaily_uvFROMweb_logsWHEREevent_type='page_view'GROUPBYdate;技术要点:使用DIST
- 风控算法(一)——数据测试
月亮月亮要去太阳
机器学习人工智能
下面的内容都是针对数据源测试的一些可能得问题:1、请描述你在开发和执行数据测试流程时的具体步骤。确定样本(对齐样本与时间,去除假样本)——确定特征(确认目前特征)——数据信息(返回的数据字典、收费方式、底层数据:特征、分数)——数据清洗(缺失值替换)——数据训练形成报告。2、如何确定数据产品在风险模型中的潜在价值和适用性的?AUC、IV、相关性、性价比、数据产品背景和领域3、请详细描述你负责的10
- 智见未来:多大模型协同的数据分析新范式
一ge科研小菜菜
人工智能大数据人工智能大数据
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着大语言模型(LLM)的快速发展,ChatGPT、DeepSeek、Grok等AI模型在数据分析和洞察生成方面展现出巨大潜力。利用多个LLM的协同能力,可以增强数据分析的多角度解读、减少单一模型的偏差,并优化洞察生成的深度和精准度。本文探讨如何结合多个LLM,在数据分析领域实现更可靠的洞察生成,并提供具体的策略、方法和应用场景。2.主要
- #Hadoop全分布式安装 #mysql安装 #hive安装
砸吧砸吧
hadoophiveyarnmysql
分布式(多台机器部署不同组件)与集群(多台机器部署相同组件)概念。Linux基础命令linux具有文件数:目录、文件,从根目录开始,路径具有唯一性。pwd:显示当前路径特殊符号:/:根目录.:隐藏文件,如果路径以.开始,表示当前目录下..:当前目录下的上一级~:当前目录的home目录--help:帮助命令使用linux常用操作命令tab键:自动补全ls:显示指定目录内容默认:当前路径-a:显示所有
- 并发爬虫实战:多线程高效抓取王者荣耀全英雄皮肤
YiFoEr_Liu
爬虫案例实操爬虫部署python爬虫python大数据
一、场景与挑战在网络爬虫开发中,我们常常面临以下挑战:需要处理成百上千个页面的数据抓取目标服务器存在反爬机制和请求频率限制单线程模式下载效率低下,难以充分利用带宽本文以王者荣耀英雄皮肤下载为例(日访问量超过1亿的热门游戏),演示如何通过Python并发编程实现高效数据抓取。二、技术选型分析2.1为什么选择并发线程?I/O密集型场景:网络请求占比90%以上GIL限制:Python线程适合I/O密集型
- Ceph数据恢复方案–分布式文件系统删除数据的恢复
San结构数据恢复
数据恢复相关ceph
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、Ceph的三种存储结构二、Ceph中删除数据的恢复提取1.本次案例情况简介:2.数据分析:2.1:BlueStore架构2.2分布式存储中元数据概述2.3提取元数据2.3.2:获取meta_data2.3.4.元数据整理2.3.5.计算数据地址3.数据恢复提取总结前言什么是分布式文件系统分布式文件系统(Distribu
- 无矩阵乘法LLM:效率与性能双突破
XianxinMao
人工智能矩阵人工智能线性代数
标题:无矩阵乘法LLM:效率与性能双突破文章信息摘要:无矩阵乘法的LLMs通过创新技术替代传统矩阵乘法操作,显著降低了计算成本,减少了对GPU的依赖。这种模型在内存使用和延迟方面表现优异,尤其在大规模模型上效率显著提升。例如,13B参数的模型仅需4.19GBGPU内存,延迟低至695.48ms,远优于传统模型。此外,基于FPGA的硬件优化进一步提升了性能,1.3B参数模型功耗仅为13W,达到人类阅
- Adam-mini:深度学习内存效率新突破
XianxinMao
人工智能深度学习人工智能
标题:Adam-mini:深度学习内存效率新突破文章信息摘要:Adam-mini优化器在深度学习领域展现出突破性潜力,尤其在内存效率和计算性能上表现卓越。相比AdamW,Adam-mini将内存效率提升了一倍,并通过减少学习率数量显著降低了内存消耗,同时保持了与AdamW相当甚至更好的性能。在训练十亿参数级别的大语言模型(LLM)时,Adam-mini实现了49.6%的吞吐量提升,并减少了33%的
- AI图像技术:真实与虚假的博弈
XianxinMao
人工智能人工智能计算机视觉深度学习
标题:AI图像技术:真实与虚假的博弈文章信息摘要:随着AI生成图像技术的快速发展,虚假信息的传播风险急剧增加,引发了社会对信息真实性的广泛担忧。AI生成的图像几乎与真实照片无法区分,可能被用于制造虚假新闻、恶意攻击和商业欺诈,导致社会信任危机。为应对这一挑战,Meta开发了StableSignature技术,通过在AI生成图像中嵌入不可见且防篡改的水印,有效识别和追踪图像来源。这项技术具有鲁棒性、
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$