参考:https://github.com/wangzheng0822/algo/blob/master/python/39_back_track/eight_queens.py
# 棋盘尺寸
BOARD_SIZE = 8
solution_count = 0
queen_list = [0] * BOARD_SIZE
def eight_queens(cur_column: int):
"""
输出所有符合要求的八皇后序列
用一个长度为8的数组代表棋盘的列,数组的数字则为当前列上皇后所在的行数
:return:
"""
if cur_column >= BOARD_SIZE:
global solution_count
solution_count += 1
# 解
print(queen_list)
else:
for i in range(BOARD_SIZE):
if is_valid_pos(cur_column, i):
queen_list[cur_column] = i
eight_queens(cur_column + 1)
def is_valid_pos(cur_column: int, pos: int) -> bool:
"""
因为采取的是每列放置1个皇后的做法
所以检查的时候不必检查列的合法性,只需要检查行和对角
1. 行:检查数组在下标为cur_column之前的元素是否已存在pos
2. 对角:检查数组在下标为cur_column之前的元素,其行的间距pos - QUEEN_LIST[i]
和列的间距cur_column - i是否一致
:param cur_column:
:param pos:
:return:
"""
i = 0
while i < cur_column:
# 同行
if queen_list[i] == pos:
return False
# 对角线
if cur_column - i == abs(pos - queen_list[i]):
return False
i += 1
return True
if __name__ == '__main__':
print('--- eight queens sequence ---')
eight_queens(0)
print('\n--- solution count ---')
print(solution_count)
参考:https://github.com/wangzheng0822/algo/blob/master/python/39_back_track/01_bag.py
from typing import List
# 背包选取的物品列表
picks = []
picks_with_max_value = []
def bag(capacity: int, cur_weight: int, items_info: List, pick_idx: int):
"""
回溯法解01背包,穷举
:param capacity: 背包容量
:param cur_weight: 背包当前重量
:param items_info: 物品的重量和价值信息
:param pick_idx: 当前物品的索引
:return:
"""
# 考察完所有物品,或者在中途已经装满
if pick_idx >= len(items_info) or cur_weight == capacity:
global picks_with_max_value
if get_value(items_info, picks) > \
get_value(items_info, picks_with_max_value):
picks_with_max_value = picks.copy()
else:
item_weight = items_info[pick_idx][0]
if cur_weight + item_weight <= capacity: # 选
picks[pick_idx] = 1
bag(capacity, cur_weight + item_weight, items_info, pick_idx + 1)
picks[pick_idx] = 0 # 不选
bag(capacity, cur_weight, items_info, pick_idx + 1)
def get_value(items_info: List, pick_items: List):
values = [_[1] for _ in items_info]
return sum([a*b for a, b in zip(values, pick_items)])
if __name__ == '__main__':
# [(weight, value), ...]
items_info = [(3, 5), (2, 2), (1, 4), (1, 2), (4, 10)]
capacity = 8
print('--- items info ---')
print(items_info)
print('\n--- capacity ---')
print(capacity)
picks = [0] * len(items_info)
bag(capacity, 0, items_info, 0)
print('\n--- picks ---')
print(picks_with_max_value)
print('\n--- value ---')
print(get_value(items_info, picks_with_max_value))
给定一个数组N,求其中存在的逆序数对。
逆序数的定义,如果N[i]>N[j](i 参考:https://github.com/wangzheng0822/algo/blob/master/python/38_divide_and_conquer/merge_sort_counting.py 参考:https://github.com/wangzheng0822/algo/blob/master/python/40_dynamic_programming/01_bag.py 题目:https://leetcode-cn.com/problems/minimum-path-sum/ 参考:https://blog.csdn.net/xiaoxiaoley/article/details/78559040 https://github.com/wangzheng0822/algo/blob/master/python/42_dynamic_programming/min_edit_dist.py 参考:https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py 参考:https://github.com/wangzheng0822/algo/blob/master/python/42_dynamic_programming/longest_increasing_subsequence.py inversion_num = 0
def merge_sort_counting(nums, start, end):
if start >= end:
return
mid = (start + end)//2
merge_sort_counting(nums, start, mid)
merge_sort_counting(nums, mid+1, end)
merge(nums, start, mid, end)
def merge(nums, start, mid, end):
global inversion_num
i = start
j = mid+1
tmp = []
while i <= mid and j <= end:
if nums[i] <= nums[j]:
inversion_num += j - mid - 1
tmp.append(nums[i])
i += 1
else:
tmp.append(nums[j])
j += 1
while i <= mid:
# 这时nums[i]的逆序数是整个nums[mid+1: end+1]的长度
inversion_num += end - mid
tmp.append(nums[i])
i += 1
while j <= end:
tmp.append(nums[j])
j += 1
nums[start: end+1] = tmp
if __name__ == '__main__':
print('--- count inversion number using merge sort ---')
# nums = [5, 0, 4, 2, 3, 1, 6, 8, 7]
nums = [5, 0, 4, 2, 3, 1, 3, 3, 3, 6, 8, 7]
print('nums : {}'.format(nums))
merge_sort_counting(nums, 0, len(nums)-1)
print('sorted: {}'.format(nums))
print('inversion number: {}'.format(inversion_num))
动态规划
0-1 背包问题
from typing import List, Tuple
def bag(items_info: List[int], capacity: int) -> int:
"""
固定容量的背包,计算能装进背包的物品组合的最大重量
:param items_info: 每个物品的重量
:param capacity: 背包容量
:return: 最大装载重量
"""
n = len(items_info)
memo = [[-1]*(capacity+1) for i in range(n)]
memo[0][0] = 1
if items_info[0] <= capacity:
memo[0][items_info[0]] = 1
for i in range(1, n):
for cur_weight in range(capacity+1):
if memo[i-1][cur_weight] != -1:
memo[i][cur_weight] = memo[i-1][cur_weight] # 不选
if cur_weight + items_info[i] <= capacity: # 选
memo[i][cur_weight + items_info[i]] = 1
for w in range(capacity, -1, -1):
if memo[-1][w] != -1:
return w
def bag_with_max_value(items_info: List[Tuple[int, int]], capacity: int) -> int:
"""
固定容量的背包,计算能装进背包的物品组合的最大价值
:param items_info: 物品的重量和价值
:param capacity: 背包容量
:return: 最大装载价值
"""
n = len(items_info)
memo = [[-1]*(capacity+1) for i in range(n)]
memo[0][0] = 0
if items_info[0][0] <= capacity:
memo[0][items_info[0][0]] = items_info[0][1]
for i in range(1, n):
for cur_weight in range(capacity+1):
if memo[i-1][cur_weight] != -1:
memo[i][cur_weight] = memo[i-1][cur_weight]
if cur_weight + items_info[i][0] <= capacity:
memo[i][cur_weight + items_info[i][0]] = max(memo[i][cur_weight + items_info[i][0]],
memo[i-1][cur_weight] + items_info[i][1])
return max(memo[-1])
if __name__ == '__main__':
# [weight, ...]
items_info = [2, 2, 4, 6, 3]
capacity = 9
print(bag(items_info, capacity))
# [(weight, value), ...]
items_info = [(3, 5), (2, 2), (1, 4), (1, 2), (4, 10)]
capacity = 8
print(bag_with_max_value(items_info, capacity))
leetcode-64 最小路径和
class Solution(object):
def minPathSum(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
m = len(grid)
n = len(grid[0])
for i in range(m):
for j in range(n):
if i==0 and j==0:
continue
if i==0 and j!=0:
grid[i][j]=grid[i][j-1]+grid[i][j]
continue
if i!=0 and j==0:
grid[i][j]=grid[i-1][j]+grid[i][j]
continue
if i!=0 and j!=0:
grid[i][j]=min(grid[i-1][j],grid[i][j-1])+grid[i][j]
continue
return grid[m-1][n-1]
实现莱文斯坦最短编辑距离
def levenshtein_dp(s: str, t: str) -> int:
m, n = len(s), len(t)
table = [[0] * (n) for _ in range(m)]
for i in range(n):
if s[0] == t[i]:
table[0][i] = i - 0
elif i != 0:
table[0][i] = table[0][i - 1] + 1
else:
table[0][i] = 1
for i in range(m):
if s[i] == t[0]:
table[i][0] = i - 0
elif i != 0:
table[i][0] = table[i - 1][0] + 1
else:
table[i][0] = 1
for i in range(1, m):
for j in range(1, n):
table[i][j] = min(1 + table[i - 1][j], 1 + table[i][j - 1], int(s[i] != t[j]) + table[i - 1][j - 1])
print(table)
return table[-1][-1]
def common_substring_dp(s: str, t: str) -> int:
m, n = len(s), len(t)
table = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
table[i][j] = max(table[i - 1][j], table[i][j - 1], int(s[i - 1] == t[j - 1]) + table[i - 1][j - 1])
return table[-1][-1]
if __name__ == "__main__":
s = "mitcmu"
t = "mtacnu"
print(levenshtein_dp(s, t))
print(common_substring_dp(s, t))
s = "kitten"
t = "sitting"
print(levenshtein_dp(s, t))
print(common_substring_dp(s, t))
s = "flaw"
t = "lawn"
print(levenshtein_dp(s, t))
print(common_substring_dp(s, t))
编程实现查找两个字符串的最长公共子序列
from __future__ import print_function
try:
xrange # Python 2
except NameError:
xrange = range # Python 3
def lcs_dp(x, y):
# find the length of strings
m = len(x)
n = len(y)
# declaring the array for storing the dp values
L = [[None] * (n + 1) for i in xrange(m + 1)]
seq = []
for i in range(m + 1):
for j in range(n + 1):
if i == 0 or j == 0:
L[i][j] = 0
elif x[i - 1] == y[ j - 1]:
L[i][j] = L[i - 1][j - 1] + 1
seq.append(x[i -1])
else:
L[i][j] = max(L[i - 1][j], L[i][j - 1])
# L[m][n] contains the length of LCS of X[0..n-1] & Y[0..m-1]
return L[m][n], seq
if __name__=='__main__':
x = 'AGGTAB'
y = 'GXTXAYB'
print(lcs_dp(x, y))
实现一个数据序列的最长递增子序列
from typing import List
def longest_increasing_subsequence(nums: List[int]) -> int:
"""
最长子上升序列的一种DP解法,从回溯解法转化,思路类似于有限物品的背包问题
每一次决策都算出当前可能的lis的长度,重复子问题合并,合并策略是lis的末尾元素最小
时间复杂度:O(n^2)
空间复杂度:O(n^2),可优化至O(n)
没leetcode上的参考答案高效,提供另一种思路作为参考
https://leetcode.com/problems/longest-increasing-subsequence/solution/
:param nums:
:return:
"""
if not nums:
return 0
n = len(nums)
# memo[i][j] 表示第i次决策,长度为j的lis的 最小的 末尾元素数值
# 每次决策都根据上次决策的所有可能转化,空间上可以类似背包优化为O(n)
memo = [[-1] * (n+1) for _ in range(n)]
# 第一列全赋值为0,表示每次决策都不选任何数
for i in range(n):
memo[i][0] = 0
# 第一次决策选数组中的第一个数
memo[0][1] = nums[0]
for i in range(1, n):
for j in range(1, n+1):
# case 1: 长度为j的lis在上次决策后存在,nums[i]比长度为j-1的lis末尾元素大
if memo[i-1][j] != -1 and nums[i] > memo[i-1][j-1]:
memo[i][j] = min(nums[i], memo[i-1][j])
# case 2: 长度为j的lis在上次决策后存在,nums[i]比长度为j-1的lis末尾元素小/等
if memo[i-1][j] != -1 and nums[i] <= memo[i-1][j-1]:
memo[i][j] = memo[i-1][j]
if memo[i-1][j] == -1:
# case 3: 长度为j的lis不存在,nums[i]比长度为j-1的lis末尾元素大
if nums[i] > memo[i-1][j-1]:
memo[i][j] = nums[i]
# case 4: 长度为j的lis不存在,nums[i]比长度为j-1的lis末尾元素小/等
break
for i in range(n, -1, -1):
if memo[-1][i] != -1:
return i
if __name__ == '__main__':
# 要求输入的都是大于0的正整数(可优化至支持任意整数)
nums = [2, 9, 3, 6, 5, 1, 7]
print(longest_increasing_subsequence(nums))