yolov3-tiny 训练。以及yolov3 画图。

训练tiny-yolov3和yolov3一样。只不过需要重新写一个权重文件。

1.准备权重文件

./darknet partial cfg/yolov3-tiny.cfg yolov3-tiny.weights yolov3-tiny.conv.15 15

先是获得训练好的yolov3-tiny的权重用来test:

yolov3-tiny.weights这个文件需要自己下,下载地址如下。

wget https://pjreddie.com/media/files/yolov3-tiny.weights

然后获得卷积层的权重用来训练自己的数据:这一步是配置权重文件,理论上并没有说提取多少层的特征合适,这里我们提取前15层当作与训练模型

2.开始训练

./darknet detector train data/voc.data yolov3-tiny.cfg yolov3-tiny.conv.15 -gpu 0

3.保存测试结果

运行darknet官方代码中的detector valid指令,生成对测试集的检测结果。

 .\darknet detector valid    -out ""

4.下载检测用脚本文件 reval_voc_py.py和voc_eval_py.py

reval_voc_py3.py

#!/usr/bin/env python

# Adapt from ->
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
# <- Written by Yaping Sun

"""Reval = re-eval. Re-evaluate saved detections."""

import os, sys, argparse
import numpy as np
import _pickle as cPickle
#import cPickle

from voc_eval_py3 import voc_eval

def parse_args():
    """
    Parse input arguments
    """
    parser = argparse.ArgumentParser(description='Re-evaluate results')
    parser.add_argument('output_dir', nargs=1, help='results directory',
                        type=str)
    parser.add_argument('--voc_dir', dest='voc_dir', default='data/VOCdevkit', type=str)
    parser.add_argument('--year', dest='year', default='2017', type=str)
    parser.add_argument('--image_set', dest='image_set', default='test', type=str)
    parser.add_argument('--classes', dest='class_file', default='data/voc.names', type=str)

    if len(sys.argv) == 1:
        parser.print_help()
        sys.exit(1)

    args = parser.parse_args()
    return args

def get_voc_results_file_template(image_set, out_dir = 'results'):
    filename = 'comp4_det_' + image_set + '_{:s}.txt'
    path = os.path.join(out_dir, filename)
    return path

def do_python_eval(devkit_path, year, image_set, classes, output_dir = 'results'):
    annopath = os.path.join(
        devkit_path,
        'VOC' + year,
        'Annotations',
        '{}.xml')
    imagesetfile = os.path.join(
        devkit_path,
        'VOC' + year,
        'ImageSets',
        'Main',
        image_set + '.txt')
    cachedir = os.path.join(devkit_path, 'annotations_cache')
    aps = []
    # The PASCAL VOC metric changed in 2010
    use_07_metric = True if int(year) < 2010 else False
    print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
    print('devkit_path=',devkit_path,', year = ',year)

    if not os.path.isdir(output_dir):
        os.mkdir(output_dir)
    for i, cls in enumerate(classes):
        if cls == '__background__':
            continue
        filename = get_voc_results_file_template(image_set).format(cls)
        rec, prec, ap = voc_eval(
            filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5,
            use_07_metric=use_07_metric)
        aps += [ap]
        print('AP for {} = {:.4f}'.format(cls, ap))
        with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f:
            cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
    print('Mean AP = {:.4f}'.format(np.mean(aps)))
    print('~~~~~~~~')
    print('Results:')
    for ap in aps:
        print('{:.3f}'.format(ap))
    print('{:.3f}'.format(np.mean(aps)))
    print('~~~~~~~~')
    print('')
    print('--------------------------------------------------------------')
    print('Results computed with the **unofficial** Python eval code.')
    print('Results should be very close to the official MATLAB eval code.')
    print('-- Thanks, The Management')
    print('--------------------------------------------------------------')

if __name__ == '__main__':
    args = parse_args()

    output_dir = os.path.abspath(args.output_dir[0])
    with open(args.class_file, 'r') as f:
        lines = f.readlines()

    classes = [t.strip('\n') for t in lines]

    print('Evaluating detections')
    do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir)

reval_voc_py.py

#!/usr/bin/env python

# Adapt from ->
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
# <- Written by Yaping Sun

"""Reval = re-eval. Re-evaluate saved detections."""

import os, sys, argparse
import numpy as np
import cPickle

from voc_eval import voc_eval

def parse_args():
    """
    Parse input arguments
    """
    parser = argparse.ArgumentParser(description='Re-evaluate results')
    parser.add_argument('output_dir', nargs=1, help='results directory',
                        type=str)
    parser.add_argument('--voc_dir', dest='voc_dir', default='data/VOCdevkit', type=str)
    parser.add_argument('--year', dest='year', default='2017', type=str)
    parser.add_argument('--image_set', dest='image_set', default='test', type=str)
    parser.add_argument('--classes', dest='class_file', default='data/voc.names', type=str)

    if len(sys.argv) == 1:
        parser.print_help()
        sys.exit(1)

    args = parser.parse_args()
    return args

def get_voc_results_file_template(image_set, out_dir = 'results'):
    filename = 'comp4_det_' + image_set + '_{:s}.txt'
    path = os.path.join(out_dir, filename)
    return path

def do_python_eval(devkit_path, year, image_set, classes, output_dir = 'results'):
    annopath = os.path.join(
        devkit_path,
        'VOC' + year,
        'Annotations',
        '{:s}.xml')
    imagesetfile = os.path.join(
        devkit_path,
        'VOC' + year,
        'ImageSets',
        'Main',
        image_set + '.txt')
    cachedir = os.path.join(devkit_path, 'annotations_cache')
    aps = []
    # The PASCAL VOC metric changed in 2010
    use_07_metric = True if int(year) < 2010 else False
    print 'VOC07 metric? ' + ('Yes' if use_07_metric else 'No')
    if not os.path.isdir(output_dir):
        os.mkdir(output_dir)
    for i, cls in enumerate(classes):
        if cls == '__background__':
            continue
        filename = get_voc_results_file_template(image_set).format(cls)
        rec, prec, ap = voc_eval(
            filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5,
            use_07_metric=use_07_metric)
        aps += [ap]
        print('AP for {} = {:.4f}'.format(cls, ap))
        with open(os.path.join(output_dir, cls + '_pr.pkl'), 'w') as f:
            cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
    print('Mean AP = {:.4f}'.format(np.mean(aps)))
    print('~~~~~~~~')
    print('Results:')
    for ap in aps:
        print('{:.3f}'.format(ap))
    print('{:.3f}'.format(np.mean(aps)))
    print('~~~~~~~~')
    print('')
    print('--------------------------------------------------------------')
    print('Results computed with the **unofficial** Python eval code.')
    print('Results should be very close to the official MATLAB eval code.')
    print('-- Thanks, The Management')
    print('--------------------------------------------------------------')

if __name__ == '__main__':
    args = parse_args()

    output_dir = os.path.abspath(args.output_dir[0])
    with open(args.class_file, 'r') as f:
        lines = f.readlines()

    classes = [t.strip('\n') for t in lines]

    print 'Evaluating detections'
    do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir)

voc_eval_py.py

voc_eval_py.py
# --------------------------------------------------------
# Fast/er R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Bharath Hariharan
# --------------------------------------------------------

import xml.etree.ElementTree as ET #读取xml。
import os
import cPickle #序列化存储模块。
import numpy as np

def parse_rec(filename):#解析读取xml函数。
    """ Parse a PASCAL VOC xml file """
    tree = ET.parse(filename)
    objects = []
    for obj in tree.findall('object'):
        obj_struct = {}
        obj_struct['name'] = obj.find('name').text
        obj_struct['pose'] = obj.find('pose').text
        obj_struct['truncated'] = int(obj.find('truncated').text)
        obj_struct['difficult'] = int(obj.find('difficult').text)
        bbox = obj.find('bndbox')
        obj_struct['bbox'] = [int(bbox.find('xmin').text),
                              int(bbox.find('ymin').text),
                              int(bbox.find('xmax').text),
                              int(bbox.find('ymax').text)]
        objects.append(obj_struct)

    return objects

def voc_ap(rec, prec, use_07_metric=False): #单个测量AP的函数。
    """ ap = voc_ap(rec, prec, [use_07_metric])
    Compute VOC AP given precision and recall.
    If use_07_metric is true, uses the
    VOC 07 11 point method (default:False).
    """
    if use_07_metric:
        # 11 point metric
        ap = 0.
        for t in np.arange(0., 1.1, 0.1):
            if np.sum(rec >= t) == 0:
                p = 0
            else:
                p = np.max(prec[rec >= t])
            ap = ap + p / 11.
    else:
        # correct AP calculation
        # first append sentinel values at the end
        mrec = np.concatenate(([0.], rec, [1.]))
        mpre = np.concatenate(([0.], prec, [0.]))

        # compute the precision envelope
        for i in range(mpre.size - 1, 0, -1):
            mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

        # to calculate area under PR curve, look for points
        # where X axis (recall) changes value
        i = np.where(mrec[1:] != mrec[:-1])[0]

        # and sum (\Delta recall) * prec
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap

def voc_eval(detpath,  ######主函数
             annopath,
             imagesetfile,
             classname,
             cachedir,
             ovthresh=0.5,
             use_07_metric=False):
    """rec, prec, ap = voc_eval(detpath,
                                annopath,
                                imagesetfile,
                                classname,
                                [ovthresh],
                                [use_07_metric])
    Top level function that does the PASCAL VOC evaluation.
    detpath: Path to detections
        detpath.format(classname) should produce the detection results file. #产生的txt文件,里面是一张图片的各个detection。
    annopath: Path to annotations
        annopath.format(imagename) should be the xml annotations file. #xml 文件与对应的图像相呼应。
    imagesetfile: Text file containing the list of images, one image per line. #一个txt文件,里面是每个图片的地址,每行一个地址。
    classname: Category name (duh) #种类的名字,即类别。
    cachedir: Directory for caching the annotations #缓存标注的目录。
    [ovthresh]: Overlap threshold (default = 0.5) #重叠的多少大小。
    [use_07_metric]: Whether to use VOC07's 11 point AP computation 
        (default False) #是否使用VOC07的11点AP计算。
    """
    # assumes detections are in detpath.format(classname)
    # assumes annotations are in annopath.format(imagename)
    # assumes imagesetfile is a text file with each line an image name
    # cachedir caches the annotations in a pickle file

    # first load gt 加载ground truth。
    if not os.path.isdir(cachedir):
        os.mkdir(cachedir)
    cachefile = os.path.join(cachedir, 'annots.pkl') #即将新建文件的路径。
    # read list of images
    with open(imagesetfile, 'r') as f:
        lines = f.readlines() #读取文本里的所以文本行,作为众多文图片的路径。
    imagenames = [x.strip() for x in lines] #所有文件名字。

    if not os.path.isfile(cachefile): #如果cachefile文件不存在,则
        # load annots
        recs = {}
        for i, imagename in enumerate(imagenames):
            recs[imagename] = parse_rec(annopath.format(imagename)) #这里的format不知道啥意思
            if i % 100 == 0:
                print 'Reading annotation for {:d}/{:d}'.format(
                    i + 1, len(imagenames)) #进度条。
        # save
        print 'Saving cached annotations to {:s}'.format(cachefile)
        with open(cachefile, 'w') as f:
            cPickle.dump(recs, f) #写入cPickle文件里面。写入的是一个字典,左侧为xml文件名,右侧为文件里面个各个参数。
    else:
        # load
        with open(cachefile, 'r') as f:
            recs = cPickle.load(f) #如果已经有了这个cPickle文件,则加载一下。

    # extract gt objects for this class #对每张图片的xml获取函数指定类的bbox等。
    class_recs = {}
    npos = 0
    for imagename in imagenames:
        R = [obj for obj in recs[imagename] if obj['name'] == classname] #获取每个文件中某种类别的物体。
        bbox = np.array([x['bbox'] for x in R]) #抽取bbox
        difficult = np.array([x['difficult'] for x in R]).astype(np.bool) #different基本都为0.

        det = [False] * len(R) #list中形参len(R)个False。
        npos = npos + sum(~difficult) #自增,sum求得的值基本都为0。
        class_recs[imagename] = {'bbox': bbox,
                                 'difficult': difficult,
                                 'det': det}

    # read dets 
    detfile = detpath.format(classname)
    with open(detfile, 'r') as f:
        lines = f.readlines()

    splitlines = [x.strip().split(' ') for x in lines]
    image_ids = [x[0] for x in splitlines] #图片index。
    confidence = np.array([float(x[1]) for x in splitlines]) #类别置信度
    BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) #变为浮点型的bbox。

    # sort by confidence
    sorted_ind = np.argsort(-confidence) #对confidence的index根据值大小进行降序排列。
    sorted_scores = np.sort(-confidence) #降序排列。
    BB = BB[sorted_ind, :] #重排bbox,由大概率到小概率。
    image_ids = [image_ids[x] for x in sorted_ind] 对图片进行重排。

    # go down dets and mark TPs and FPs 
    nd = len(image_ids)
    tp = np.zeros(nd) 
    fp = np.zeros(nd) #归零。
    for d in range(nd):
        R = class_recs[image_ids[d]]
        bb = BB[d, :].astype(float)
        ovmax = -np.inf
        BBGT = R['bbox'].astype(float)

        if BBGT.size > 0:
            # compute overlaps
            # intersection
            ixmin = np.maximum(BBGT[:, 0], bb[0])
            iymin = np.maximum(BBGT[:, 1], bb[1])
            ixmax = np.minimum(BBGT[:, 2], bb[2])
            iymax = np.minimum(BBGT[:, 3], bb[3])
            iw = np.maximum(ixmax - ixmin + 1., 0.)
            ih = np.maximum(iymax - iymin + 1., 0.)
            inters = iw * ih

            # union
            uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
                   (BBGT[:, 2] - BBGT[:, 0] + 1.) *
                   (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)

            overlaps = inters / uni
            ovmax = np.max(overlaps)
            jmax = np.argmax(overlaps)

        if ovmax > ovthresh:
            if not R['difficult'][jmax]:
                if not R['det'][jmax]:
                    tp[d] = 1.
                    R['det'][jmax] = 1
                else:
                    fp[d] = 1.
        else:
            fp[d] = 1.

    # compute precision recall
    fp = np.cumsum(fp)
    tp = np.cumsum(tp)
    rec = tp / float(npos)
    # avoid divide by zero in case the first detection matches a difficult
    # ground truth
    prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
    ap = voc_ap(rec, prec, use_07_metric)

    return rec, prec, ap

5.使用reval_voc_py.py计算出mAP值并且生成pkl文件

python reval_voc_py3.py --voc_dir  --year <年份> --image_set <验证集文件名> --classes <类名文件路径> <输出文件夹名

 先将第三部生成的results文件夹移动到当前脚本文件所在的位置,然后执行上述指令。

首先python表示运行python代码

reval_voc_py3.py表示当前运行的脚本文件名,python3的话就用这个,python2的话用reval_voc.py。

voc文件路径就是当时训练用的VOC数据集的路径,比如windows下 d:\darknet\scripts\VOCdevkit,linux就是 \home\xxx\darknet\scripts\VOCdevkit,这里只是打个比方,读者请替换成自己需要的路径

年份就是VOC数据集里VOC文件名里的时间,比如2007、2012这样的。

验证集文件名一般是VOCdevkit\VOC2017\ImageSets\Main中的文件中txt文件名,比如train.txt,把需要测试的图片名全部塞进去就可以了,如果没有的话自行创建(不过没有的话怎么训练的呢)。注意:这里只需要填文件名,txt后缀都不需要的。

类名文件路径就是voc.names文件的路径,在voc.data文件里面是有的,第4行names那里。

输出文件夹名就自己随便写了,比如我这里写的testForCsdn。

参数全部替换好就可以跑了,大概画风如下所示:

这时会在脚本当前目录生成一个存放了pkl文件的文件夹,名字就是刚才输入的输出文件夹名。(这里的名字不需要和我的一样,如果你有多个类的话,就会生成多个文件,文件名就是你的类名)

注意,这时已经能看到mAP值了。(我这里的验证集较小,目标较简单,所以mAP大了些,不用在意)
6 用matplotlib绘制PR曲线
 

你可能感兴趣的:(yolo3)