有点不安全却又一亮的 Go unsafe.Pointer

在上一篇文章 《深入理解 Go Slice》 中,大家会发现其底层数据结构使用了 unsafe.Pointer。因此想着再介绍一下其关联知识。


前言

在大家学习 Go 的时候,肯定都学过 “Go 的指针是不支持指针运算和转换” 这个知识点。为什么呢?

首先,Go 是一门静态语言,所有的变量都必须为标量类型。不同的类型不能够进行赋值、计算等跨类型的操作。那么指针也对应着相对的类型,也在 Compile 的静态类型检查的范围内。同时静态语言,也称为强类型。也就是一旦定义了,就不能再改变它。


错误示例


func main(){
   num := 5
   numPointer := &num

   flnum := (*float32)(numPointer)
   fmt.Println(flnum)
}


输出结果:


# command-line-arguments
...: cannot convert numPointer (type *int) to type *float32


在示例中,我们创建了一个 num 变量,值为 5,类型为 int。取了其对于的指针地址后,试图强制转换为 *float32,结果失败...


unsafe

针对刚刚的 “错误示例”,我们可以采用今天的男主角 unsafe 标准库来解决。它是一个神奇的包,在官方的诠释中,有如下概述:


  • 围绕 Go 程序内存安全及类型的操作


  • 很可能会是不可移植的


  • 不受 Go 1 兼容性指南的保护


简单来讲就是,不怎么推荐你使用。因为它是 unsafe(不安全的),但是在特殊的场景下,使用了它。可以打破 Go 的类型和内存安全机制,让你获得眼前一亮的惊喜效果。


Pointer

为了解决这个问题,需要用到 unsafe.Pointer。它表示任意类型且可寻址的指针值,可以在不同的指针类型之间进行转换(类似 C 语言的 void * 的用途)

其包含四种核心操作:


  • 任何类型的指针值都可以转换为 Pointer


  • Pointer 可以转换为任何类型的指针值


  • uintptr 可以转换为 Pointer


  • Pointer 可以转换为 uintptr


在这一部分,重点看第一点、第二点。你再想想怎么修改 “错误示例” 让它运行起来?

func main(){
   num := 5
   numPointer := &num

   flnum := (*float32)(unsafe.Pointer(numPointer))
   fmt.Println(flnum)
}


输出结果:


0xc4200140b0


在上述代码中,我们小加改动。通过 unsafe.Pointer 的特性对该指针变量进行了修改,就可以完成任意类型(*T)的指针转换。

需要注意的是,这时还无法对变量进行操作或访问。因为不知道该指针地址指向的东西具体是什么类型。不知道是什么类型,又如何进行解析呢。无法解析也就自然无法对其变更了


Offsetof

在上小节中,我们对普通的指针变量进行了修改。那么它是否能做更复杂一点的事呢?

type Num struct{
   i string
   j int64
}

func main(){
   n := Num{i: "EDDYCJY", j: 1}
   nPointer := unsafe.Pointer(&n)

   niPointer := (*string)(unsafe.Pointer(nPointer))
   *niPointer = "煎鱼"

   njPointer := (*int64)(unsafe.Pointer(uintptr(nPointer) + unsafe.Offsetof(n.j)))
   *njPointer = 2

   fmt.Printf("n.i: %s, n.j: %d", n.i, n.j)
}


输出结果:


n.i: 煎鱼, n.j: 2


在剖析这段代码做了什么事之前,我们需要了解结构体的一些基本概念:


  • 结构体的成员变量在内存存储上是一段连续的内存


  • 结构体的初始地址就是第一个成员变量的内存地址


  • 基于结构体的成员地址去计算偏移量。就能够得出其他成员变量的内存地址


再回来看看上述代码,得出执行流程:


  • 修改 n.i 值:i 为第一个成员变量。因此不需要进行偏移量计算,直接取出指针后转换为 Pointer,再强制转换为字符串类型的指针值即可


  • 修改 n.j 值:j 为第二个成员变量。需要进行偏移量计算,才可以对其内存地址进行修改。在进行了偏移运算后,当前地址已经指向第二个成员变量。接着重复转换赋值即可


需要注意的是,这里使用了如下方法(来完成偏移计算的目标):


1、uintptr:uintptr 是 Go 的内置类型。返回无符号整数,可存储一个完整的地址。后续常用于指针运算

type uintptr uintptr


2、unsafe.Offsetof:返回变量的字节大小,也就是本文用到的偏移量大小。需要注意的是入参 ArbitraryType 表示任意类型,并非定义的 int。它实际作用是一个占位符


func Offsetof(x ArbitraryType) uintptr


在这一部分,其实就是巧用了 Pointer 的第三、第四点特性。这时候就已经可以对变量进行操作了


错误示例

func main(){
   n := Num{i: "EDDYCJY", j: 1}
   nPointer := unsafe.Pointer(&n)
   ...

   ptr := uintptr(nPointer)
   njPointer := (*int64)(unsafe.Pointer(ptr + unsafe.Offsetof(n.j)))
   ...
}


这里存在一个问题,uintptr 类型是不能存储在临时变量中的。因为从 GC 的角度来看,uintptr 类型的临时变量只是一个无符号整数,并不知道它是一个指针地址

因此当满足一定条件后,ptr 这个临时变量是可能被垃圾回收掉的,那么接下来的内存操作,岂不成迷?


总结


简洁回顾两个知识点。第一是 unsafe.Pointer 可以让你的变量在不同的指针类型转来转去,也就是表示为任意可寻址的指针类型。第二是 uintptr 常用于与 unsafe.Pointer 打配合,用于做指针运算,巧妙地很。


最后还是那句话,没有特殊必要的话。是不建议使用 unsafe 标准库,它并不安全,虽然它常常能让你眼前一亮。


你可能感兴趣的:(有点不安全却又一亮的 Go unsafe.Pointer)