- 线性代数 --- LU分解(Gauss消元法的矩阵表示)
松下J27
LinearAlgebra线性代数矩阵LU分解高斯消元矩阵运行gaussianLU
Gauss消元法等价于把系数矩阵A分解成两个三角矩阵L和U的乘法首先,LU分解实际上就是用矩阵的形式来记录的高斯消元的过程。其中,对矩阵A进行高斯消元后的结果为矩阵U,是LU分解后的两个三角矩阵中其中之一。U是一个上三角矩阵,U就是上三角矩阵uppertriangle的首字母的大写。高斯消元的每一步都能用基本消元矩阵E来表示。而所有的E都可以收录在一个矩阵当中,我这里叫他Z矩阵。Z矩阵就是集所有基
- 数学基础 -- 线性代数之行阶梯形
sz66cm
线性代数机器学习人工智能
行阶梯形行阶梯形(RowEchelonForm,REF)是线性代数中用于简化矩阵形式的一种方法,常用于求解线性方程组。矩阵经过行变换(如高斯消元法)后可以转换为行阶梯形,它具有以下特点:行阶梯形的定义零行在矩阵的底部:矩阵中如果存在一行全为零的行,这些行必须在矩阵的最下方。每一非零行的首个非零元素为1:这一元素称为该行的主元(leadingentry)。主元是从左到右的第一个非零元素,并且主元必须
- 乘法-逆矩阵
取个名字真难呐
线性代数矩阵算法线性代数
文章目录1.矩阵相乘-5种方式1.1C=AB1.2AX列组合1.3XB行组合1.4列行组合1.5块求和2.高斯消元法求A−1A^{-1}A−12.1求A−1A^{-1}A−12.2推理1.矩阵相乘-5种方式1.1C=AB假设我们要求得矩阵C=AB,可以用如下公式表示cij=∑k=1Naikbkj(1)c_{ij}=\sum_{k=1}^Na_{ik}b_{kj}\tag{1}cij=k=1∑Nai
- 课程大纲:图像处理中的矩阵计算
superdont
计算机视觉图像处理矩阵人工智能
课程名称:《图像处理中的矩阵计算》课程简介:图像处理中的矩阵计算是图像分析与处理的核心部分。本课程旨在教授学员如何应用线性代数中的矩阵计算,以实现各种图像处理技术。我们将通过强调实际应用和实践活动来确保学员能够理解和掌握这些概念。课程大纲:第1章:矩阵计算基础矩阵及其表示方式矩阵四则运算单位矩阵和逆矩阵矩阵的转置线性系统和矩阵的求解(高斯消元法)第2章:图像表示和颜色空间数字图像的矩阵表示灰度图像
- [数学]高斯消元
Waldeinsamkeit41
算法数据结构
介绍用处:求解线性方程组加减消元法和代入消元法这里引用了高斯消元解线性方程组----C++实现_c++用高斯消元法解线性方程组-CSDN博客改成了自己常用的形式:intgauss(){intc,r;//column,rowfor(c=1,r=1;cfabs(a[maxx][c]))maxx=i;if(fabs(a[maxx][c])=c;i--)a[r][i]/=a[r][c];//把现在的第r行
- 06 逆矩阵、列空间与零空间
林炒Lynn
06逆矩阵、列空间与零空间imageimage直观理解这几个概念,计算方法不作讨论,如"Gaussianelimination高斯消元法"和"rowechelonform行阶梯型".Letthecomputerdocomputing!Usefulnessofmatrices矩阵的用途计算机图形学机器人学被广泛应用的一个主要原因就是它能帮助我们求解特定的systemofequations方程组大部分
- 蓝桥杯_数学知识_1 (质数筛法 - 分解质因数 - 约数【约数个数 - 约数之和 - 最大公约数】 )
violet~evergarden
算法蓝桥杯c++
文章目录866.试除法判定质数868.筛质数((朴素)埃氏筛法、线性筛法)判断素数埃式筛法(朴素)线性筛法【分解质因数】869.试除法求约数(试除法)870.约数个数871.约数之和872.最大公约数1.数论【每一步都要想时间复杂度,看能不能做】2.组合计数3.高斯消元4.简单博弈论866.试除法判定质数给定n个正整数ai,判定每个数是否是质数。输入格式第一行包含整数n。接下来n行,每行包含一个正
- 计算机是怎么求解线性方程的(矩阵乘和求逆)
異轩
上回我们说到,高斯老哥用消元法解线性方程,大致步骤呢就是给系数矩阵消元,运气好点呢直接整出上三角系数矩阵,得到方程组的唯一解,运气不行呢,消着消着发现整不出上三角,这时就得再讨论方程是有多解还是无解。这里所说的"运气"呢其实可以根据行列式啊,Ax=0是否有解啊判断得到,具体操作可以看看我聊消元法的那一篇文章。但是,高斯消元法存在一个问题,就是它是给人做的,比如给第一行乘个倍数加到另一行,或者将矩阵
- AcWing.883.高斯消元解线性方程组
Die love 6-feet-under
算法c++笔记
输入一个包含n个方程n个未知数的线性方程组。方程组中的系数为实数。求解这个方程组。下图为一个包含m个方程n个未知数的线性方程组示例:输入格式第一行包含整数nnn。接下来nnn行,每行包含n+1n+1n+1个实数,表示一个方程的nnn个系数以及等号右侧的常数。输出格式如果给定线性方程组存在唯一解,则输出共nnn行,其中第iii行输出第iii个未知数的解,结果保留两位小数。注意:本题有SPJ,当输出结
- C++ 数论相关题目:高斯消元解异或线性方程组
伏城无嗔
数论力扣算法笔记c++算法
输入一个包含n个方程n个未知数的异或线性方程组。方程组中的系数和常数为0或1,每个未知数的取值也为0或1。求解这个方程组。异或线性方程组示例如下:M[1][1]x[1]^M[1][2]x[2]^…^M[1][n]x[n]=B[1]M[2][1]x[1]^M[2][2]x[2]^…^M[2][n]x[n]=B[2]…M[n][1]x[1]^M[n][2]x[2]^…^M[n][n]x[n]=B[n]
- 详解矩阵的LDU分解
唠嗑!
格密码的数学基础算法网络安全线性代数
目录一.矩阵分解二.解方程三.例题说明四.矩阵的LDU分解五.矩阵三角分解的唯一性一.矩阵分解其实我们可以把一个线性系统(LinearSystem)看成两个三角系统(TriangularSystems),本文章将解释为什么可以这么看待解线性方程组,以及这样理解到底有什么好处。我们知道高斯消元法其实跟矩阵的三角分解有关,如下:A=LU其中,A为任意方阵,L为下三角矩阵且对角线处元素均为1,U为上三角
- MIT_线性代数笔记:线性代数常用概念及术语总结
浊酒南街
MIT_线性代数笔记线性代数笔记
目录1.系数矩阵2.高斯消元法3.置换矩阵Permutation4.逆矩阵Inverse5.高斯-若尔当消元法6.矩阵的LU分解7.三角矩阵1.系数矩阵线性代数的基本问题就是解n元一次方程组。例如:二元一次方程组2x−y=0−x+2y=3\begin{align*}&2x-y=0\\&-x+2y=3\end{align*}2x−y=0−x+2y=3写成矩阵形式就是:[2−1−12][xy]=[03
- 数论知识及模板整理
smiling~
数论模板学习笔记算法
目录一、质数的判定1.试除法判定质数2.质因数的分解3.质数筛选法(埃氏筛法+线性筛)4.米勒罗宾素数检测法(快速判断大质数)二、约数相关(1)试除法求约数(2)求约数个数或约数之和(3)求最大公因数/最小公倍数三、欧几里得算法(1)扩展欧几里得算法(2)线性同余方程四、快速幂(1)快速幂算法(2)大数快速幂(降幂公式)(3)快速幂求逆元(费马小定理)五、欧拉函数六、组合数学七、高斯消元八、容斥原
- 第九周学习报告(1.15-1.21)
三冬四夏会不会有点漫长
#算法训练周报学习
知识点,比赛和做题情况知识点终于把acwing的算法基础课全部看完了(是一些简单的算法模板)比赛无做题情况1.CF写了一个教育场次的A题TrickySum(等差数列求和,循环)2.acwing900.(dp的一个模板题)883,884(高斯消元的模板题)885,886,887,888,889(组合数的模板题)890(容斥原理模板题)891,892,893,894(博弈论模板题)894,338,29
- 详解矩阵的三角分解A=LU
唠嗑!
格密码的数学基础算法线性代数网络安全
目录一.求解Ax=b二.上三角矩阵分解三.下三角矩阵分解四.矩阵的三角分解举例1:矩阵三角分解举例2:三角分解的限制举例3:主元和乘法因子均为1举例4:U为单位阵小结一.求解Ax=b我们知道高斯消元法可以对应矩阵的基础变换。先来看我们比较熟悉的Ax=b模型,如下:解这个方程很简单,只需要三步高斯消元步骤,分别乘以2,-1,-1.第一步:第二行减去第一行乘以2倍;第二步:第三行减去第一行乘以-1;第
- c语言求逆矩阵-高斯消元法
不会C语言的男孩
c语言矩阵开发语言
/***A表示输入的矩阵*B表示输出的逆矩阵*n表示秩的大小*/voidGauss(doubleA[][N],doubleB[][N],intn)//这里的n指的是n*n的方阵中的n{inti,j,k;doublemax,temp;doublet[N][N];//临时矩阵//将A矩阵存放在临时矩阵t[n][n]中for(i=0;ifabs(max)){max=t[j][i];k=j;}}//如果主
- 并行程序设计实验——高斯消元
NK.MainJay
c语言
并行程序设计实验——高斯消元一、问题描述熟悉高斯消元法解线性方程组的过程,然后实现SSE算法编程。过程中,自行构造合适的线性方程组,并选取至少2个角度,讨论不同算法策略对性能的影响。可选角度包括但不限于以下几种选项:①相同算法对于不同问题规模的性能提升是否有影响,影响情况如何;②消元过程中采用向量编程的的性能提升情况如何;③回代过程可否向量化,有的话性能提升情况如何;④数据对齐与不对齐对计算性能有
- 二维泊松方程求解-SIP-最速下降法-共轭梯度
CFD_Tyro
1.直接解法:LU分解在前面的内容中曾经提到,使用有限差分或有限体积法通过隐式离散得到的求解形式,其中为系数矩阵。在一定条件下,能够通过因式分解为,其中为下三角矩阵,为上三角矩阵。这样的分解方式在高斯消元中十分有用,对的求解可分为以下两步2.迭代法:incompleteLUdecomposition如果存在一个与近似的矩阵,对做LU分解,我们把这样的步骤称为的不完全LU分解,ILU,即其中为小量。
- HDU-5955 Guessing the Dice Roll(AC自动机、高斯消元)
上总介
文章目录原题链接题意思路推导代码原题链接GuessingtheDiceRoll题意给定N(1≤N≤10)N(1\leqN\leq10)N(1≤N≤10)个长度都为L(1≤L≤10)L(1\leqL\leq10)L(1≤L≤10)的数字序列Ti(1≤i≤10)T_i(1\leqi\leq10)Ti(1≤i≤10),数字序列仅由{1,2,3,4,5,6}\left\{1,2,3,4,5,6\right
- 算法有哪⼏类?
颓特别我废
C语言算法c语言
一、问题按照执⾏功能的不同,可以将算法分为不同的类别,那么算法有哪⼏类?二、解答计算机上的算法按照实现功能可以分为两⼤类:即数值型算法和⾮数值算法。1、数值型算法(NumericalAlgorithms)这类算法主要用于处理数值数据和解决数学问题,它们通常涉及到大量的数学计算,包括但不限于矩阵运算、微积分、线性代数、概率统计、优化问题等。例如,求解方程组的高斯消元法、数值积分方法如辛普森法则、牛顿
- C#,数值计算,高斯消元法与列主元消元法的源代码及数据动态可视化
深度混淆
C#算法演义AlgorithmRecipesC#数值计算NumericalRecipesc#算法高斯消元法线性代数
高斯消元法!一、高斯消元法GaussianElimination高斯消元法(或译:高斯消去法),是线性代数中的一个常用算法,常用于求解线性方程组和矩阵的逆。本程序的运行效果:1、高斯消元法的动画演示2、高斯列主元消元法的动画演示列主元素消去法是为控制舍入误差而提出来的一种算法,列主元素消去法计算基本上能控制舍入误差的影响,其基本思想是:在进行第k(k=1,2,...,n-1)步消元时,从第k列的a
- 【数值分析】高斯消元法,matlab实现
你哥同学
数值分析matlab线性代数高斯消元法列主元高斯消元法数值分析
高斯消元法An×nx=bA_{n\timesn}x=bAn×nx=b步骤:1.列出增广矩阵Z=[A∣b]2.迭代 , j=1,2,⋯ ,nZ第i行的每个元素乘以Zi−1,jZi,j , i=j+1,j+2,⋯ ,nZ第i行减去第j行 , 消元3.回代xi=bi−∑j=i+1nxj⋅Ai,jAi,i , i=n,n−1,⋯ ,1\begin{align*}1.&列出增广矩阵Z=[A|
- c++ 高斯消元算法实现
ldxxxxll
算法c++开发语言
c++有回代消元和无回代消元的算法在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?高斯消元即是用矩阵求解方程组的方法如下是高斯消元的c++代码,包含求解步骤的注释,看代码和注释更直观:/*使用方法constintN=4
- c++高斯消元法——简单高效求解线性方程组
yzc_qiuse
c++c++开发语言
c++高斯消元法——简单高效求解线性方程组1.概念引入1.1线性方程组1.2线性方程组和矩阵1.3无穷解、无解的情况1.3.1一元线性方程1.3.2nnn元线性方程组1.4高斯消元法2.例题精讲2.1【模板】高斯消元法2.1题目分析2.2.2代码2.2.3AC图片3.结语1.概念引入求解线性方程组在实际问题中具有广泛的应用。它可用于建立物理、工程、经济等领域的数学模型,并通过求解方程组来得到问题的
- 矩阵求逆(C语言)
kk.copt
C语言简单函数c语言算法线性代数矩阵
高斯消元法求逆对于任意一个矩阵Anxn,其满足。基于此,高斯消元法具体步骤是先构造一个增广矩阵W=[A|E],则W为一个nx2n的矩阵。我们需要对矩阵W进行矩阵行之间的变换,将其变为[E|B]的形势,如果能够成功变换,则B就为A矩阵的逆矩阵。具体操作过程如下:(1)将初始矩阵A右半部分进行扩增,得到矩阵W=[A|E],W为nx2n。(2)将首行作为基准,从上往下做行变换,将W前半部分转化为一个上三
- 高斯消元法——matlab实现
圆sir
笔记matlab开发语言
目录基本原理实验部分主要代码部分代码解析运行结果个人心得基本原理1.构造增广矩阵:将线性方程组的系数矩阵和常数向量合并成一个增广矩阵。2.选取主元:从第一列开始,找到当前列中绝对值最大的元素,将其作为主元素。3.行交换:交换包含主元素的行与当前处理的行,确保主元素在当前处理行的位置上。4.主元归一化:将主元所在的行除以主元素的值,使主元素变为1。5.消元操作:使用主元所在行的倍数,将当前处理行下方
- 数值分析总结
互联网的猫
算法其他
数值分析总结思维导图Docs相关代码的使用和注释列主元Gauss消元法%%列主元高斯消元法functionx=Gauss_lzy(A,b)%A为方程组系数矩阵,b为方程组的右侧向量,x为方程组的解[n,m]=size(A);%%得到矩阵A的行和列的宽度nb=length(b);%%方程组右侧向量的长度ifn~=m%%如果系数矩阵的行数和方程组右侧向量的长度不相等,错误error('%系数矩阵必须是
- matlab高斯差分,高斯变异算子matlab
weixin_39643255
matlab高斯差分
高斯消元法MATLAB实现_数学_自然科学_专业资料。.《数值分析》实验报告一、实验目的与要求1.掌握高斯消去法的基本思路和迭代步骤;2.培养编程与上机调试能力......(完整word版)高斯平滑滤波器(含matlab代码)_数学_自然科学_专业资料。GaussianSmoothingFilter高斯平滑滤波器一、图像滤波的基本概念图像常常被强度随机信号(也称......变异算子_数学_自然科学
- AcWing算法基础课----数学知识(三) 笔记 ( 高斯消元 + 求组合数 )
彡倾灬染|
算法学习笔记AcWingc++c语言
数学知识高斯消元O(n^3)求组合数1.递归法求组合数2.Lucas定理3.分解质因数法求组合数卡特兰数高斯消元O(n^3)解方程:无解\无穷多解\有唯一解利用线性代数初等行列变换1.把某一行乘一个非零的数2.交换某两行3.把某行若干倍加到另一行上去变换之后结果与解的关系:1.完美阶梯型唯一解2.不完美阶梯型0=非零无解3.不完美阶梯型0=0无穷解浮点数判断是否为零需要和eps比算法步骤:枚举每一
- 算法基础课—数学知识(四)高斯消元、组合数
肥肥饼
算法基础课算法数据结构
算法基础课—数学知识(四)高斯消元、组合数高斯消元——解方程组对于有解和无解的判断例子消元回代有无穷多个解的情况无解的情况算法思路题目代码模板自己的代码求组合数方法一模板自己的代码方法二题目模板代码方法三题目模板代码方法四题目模板自己的代码满足条件的01序列题目卡特兰数模板代码高斯消元——解方程组应用:在n的三次方时间内可以解n个方程组的解方法:矩阵的行列变换思想:先消元,再回代最后可以把矩阵变成
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p