- 2.1概率统计的世界
极客探索者
量化交易概率论
欢迎来到概率统计的世界!在量化交易中,概率统计是至关重要的工具。通过理解概率,我们可以用数学的方法来描述市场行为,预测未来走势,并制定交易策略。让我们一起从基础概念开始,逐步深入,揭开概率统计的神秘面纱。1.1概率论的基本概念与应用概率是用来描述某个事件发生可能性的数值。例如,丢一枚硬币,正面朝上的概率是50%。这个概率可以用数学公式表示为:在量化交易中,我们常常需要计算各种事件的概率,例如股票价
- 深度学习应该如何入门?
wypdao
人工智能深度学习人工智能
深度学习是一门令人着迷的领域,但初学者可能会感到有些困惑。让我们从头开始,用通俗易懂的语言来探讨深度学习的基础知识。1.基础知识深度学习需要一些数学和编程基础。首先,我们要掌握一些数学知识,如线性代数、微积分和概率统计。这些知识在深度学习算法中非常常见。另外,选择一门编程语言作为工具,如Python,掌握其基本语法和常用库的使用。2.学习机器学习吴恩达的机器学习课程是一个很好的入门教程。虽然有些地
- 如何学习和规划类似ChatGPT这种人工智能(AI)相关技术
ABEL in China
学习chatgpt人工智能
学习和规划类似ChatGPT这种人工智能(AI)相关技术的路径通常包括以下步骤:学习基础知识:学习编程:首先,你需要学习一种编程语言,例如Python,这是大多数人工智能项目的首选语言。数学基础:深度学习和自然语言处理等领域需要一定的数学基础,包括线性代数、微积分和概率统计。掌握机器学习和深度学习:了解机器学习和深度学习的基本概念,例如神经网络、卷积神经网络(CNN)和递归神经网络(RNN)。学习
- 均方根(rms),标准差(std),平均绝对误差(mae),方差(var/std*std)计算与数学意义
拾穗哥
matlab算法经验分享
在计算时总是遇到需要计算平均值,但是对于均方根和标准差选择还是不明确。标题里面的括号为matlab函数可以直接运行。1、均方根(rms)均方根误差用于衡量观测值同真值之间的偏差。2、标准差(std)标准差是方差的算术平方根。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。3、平均绝对误差(mae)平均绝对误差是所有单个观测值与算术平均值的偏
- 发家致富的秘密(83)
c0e1a742c261
1)、父母做什么,我们便跟着做什么。能超越父母的子女并不多。父母读大学,孩子便能读大学。父母是大学教授,孩子再差也是大学老师。生活是概率统计,漏网之鱼不过是传奇,是奇迹。我们35岁做什么,我们的孩子到了35岁便做什么。锁定一个卖点循环。锁定了,便不要变。不要以为人生很长。从大学出来,我们不是22便是23。25岁成家了,所有的想法都没了。挣扎到35岁,便是人生的顶点。现在,我们在做什么?我们的卖点,
- 8、python多项式贝叶斯文本分类(完整)
UP Lee
数据挖掘实战多项式贝叶斯文章分类
1、贝叶斯定理(BayesTheorem)朴素贝叶斯分类(NaiveBayesClassifier)贝叶斯分类算法,是统计学的一种分类方法,它是利用贝叶斯定理的概率统计知识,对离散型的数据进行分类的算法2、贝叶斯算法的类型sklearn包naive_bayes模块GaussianNB高斯贝叶斯BernoulliNB伯努利贝叶斯MultionmialNB多项式贝叶斯(需要知道具体每个特征的数值大小)
- 这才是心理学
JeetChan
这才是心理学 如果让我荐书,一定是这本,《这才是心理学》。曾极力向身边的人推荐学习概率统计方面的知识,尽管人们都“嗤之以鼻”,而我认为世界是被概率统治的,最终被揭示的行为规律通常都是一种概率关系。这本书向我们阐述了心理学的批判性思维(原作名:HowtoThinkStraightaboutPsychology)和概率性思维。书中有大量反常识的观点,颠覆你的认知。同时,这也是一本难书,书中包含了大量
- LogLogCounting 基数估计算法
芒果菠萝蛋炒饭
介绍基数估计算法(CardinalityEstimationAlgorithm)是基于概率统计理论的估算给定数据集中不重复元素基数的算法。它是一种基于概率统计理论所设计的概率算法,克服了精确基数计数算法的诸多弊端(如内存需求过大或难以合并等),同时可以通过一定手段将误差控制在所要求的范围内。什么是基数?基数指的是一个集合(这里的集合可以包含重复元素,不是集合论中定义的集合)中不同元素的个数,例如集
- 基于第一性原理投资
曹博士
图片发自App张教授打造丹华资本,致力于用第一性原理来指导风险投资。所谓第一性原理,就是基于最基本的自然法则,而且通常是可以用数学来表达并且在物理上首先验证。比如熵法则,量子原理,概率统计框架,等。不过从实际效果来看,2013起步的丹华资本,业绩很差。基本上成了反面案例。这个类似由诺贝尔经济学获奖者组建的量化投资公司长期资本,本来希望用量化的方式做套利投资,结果一个俄罗斯的黑天鹅事件,就让其折戟沉
- 概率统计学习打卡——数理统计与描述性分析
xtsqmx
1.数理统计的基本概念总体:研究对象的全体(X)个体:组成总体的每个基本单元样本:从总体中抽取的一部分个体()简单随机样本:具有随机性和独立性的样本,即样本相互独立具有同一分布样本的两重性:抽样前是随机变量,抽样后是具体的数统计量:样本的函数,不含有任何未知参数抽样分布:统计量的分布2.常用的统计量样本均值:用来估计总体均值和对对有关总体均值的假设做检验样本方差:用来估计总体方差和对有关总体方差的
- DataWhale概率统计4——方差分析
摩卡Daddy
6.方差分析6.1概要方差分析(Analysisofvariance,ANOVA)主要研究分类变量作为自变量时,对因变量的影响是否显著,用于两个及两个以上样本均属差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分为两类,一是不可控的随机因素,另一是研究中施加对结果形成影响的可控因素6.2原理方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发
- 《自动驾驶汽车的缺陷及其产品责任》(四)
刘东利2020
接下来是自动驾驶的主体资格讨论,从技术及法律上。首先看技术的理解:从自动驾驶人工智能所赖以实现的技术来看,所谓具有深度自主学习能力的人工智能其本质上是依靠大数据、概率统计以及日益增长的运算能力实现对驾驶行为及其规律的重复性归纳,但并不能完全揭示其本质或内在规律,尤其是其缺乏人类的创造性思维,无法在既有信息和数据的基础上创造性地解决未知问题、无法创造新知识。所以,第一方面的题眼是“重复性归纳”,不具
- 人工智能之大数定理和中心极限定理
WEL测试
人工智能WEL测试人工智能概率论大数定理中心极限定理
大数定律大数定律:是一种描述当试验次数很大时所呈现的概率性致的定律,由概率统计定义“频率收敛于概率”引申而来。换而言之,就是n个独立分布的随机变量其观察值的均值依概率收敛于这些随机变量所属分布的理论均值,也就是总体均值。例如:假设每次从1、2、3当中随机选取一个数字,随着抽样次数的增加,样本均值越来越趋近于总体期望((1+2+3)/3=2)。依概率收敛:设{XnX_nXn}为一随机变量序列,X为一
- DAY 25 《你能准确的预测股价嘛》
Ciel天
你不能准确的预估5分钟内股票价格的涨幅,就像你不能够预估,抛硬币时会是哪一面朝上一样,因为这两件事情都和赌博买彩票一样,是“独立事件”。换句话说,预测的准确率永远无法超过50%,这在概率统计学上没有意义。当一件事情发生的概率在50%以上,哪怕是51%,我们就要努力,甚至要赌,因为哪怕是这一次输了,从长期看,你一定会赢。“绝大多数人没有从觉悟上理解统计概率基础知识有多么重要,于是,这一辈子就好像别人
- 机器学习 强化学习 深度学习的区别与联系
坠金
机器学习机器学习人工智能深度学习
机器学习强化学习深度学习机器学习按道理来说,这个领域(机器学习)应该叫做统计学习(StatisticalLearning),因为它的方法都是由概率统计领域拿来的。这些人中的领军人物很有商业头脑,把统计和物理的数理模型,改名叫做机器,比如**模型(model)就叫**机(machine),把一些层次模型(hierarchicalmodel)说成是“网”(net)。这样,搞出了几个“机”和“网”之后,
- 深度学习如何入门?
清水白石008
深度学习自然语言处理人工智能
深度学习如何入门?深度学习是一种利用多层神经网络来学习数据特征和模式的机器学习方法,它在图像识别、自然语言处理、语音识别、推荐系统等领域都取得了令人瞩目的成果。那么,如果你想学习深度学习,你需要掌握哪些知识和技能呢?本文将为你提供一个简明的指南,帮助你快速入门深度学习。一、基础知识深度学习涉及到许多数学概念,如线性代数、微积分和概率统计。如果你对这些概念不熟悉,可以通过在线课程、教科书和教程来学习
- 读过的书单
竭尽全力才能成功
读万卷书行万里路2017-今天读过的书单写出来给大家参考下工欲善其事,必先利其器我是一个php程序员鸟哥的linux私房菜基础篇服务器架构篇日本结城浩著程序员的数学1程序员的数学2概率统计程序员的数学3线性代数蒋心数据库系统概论清华大学出版社Mysql从入门到精通国家863软件孵化器headfirst设计模式大话设计模式人月神话HTTP权威指南人民邮电出版社redis入门指南李子烨人民邮电出版社锋
- 贝叶斯估计:Cramér-Rao下界和Fisher信息
DoYoungExplorer
导航算法及滤波算法概率论人工智能机器学习
在概率统计和信息理论领域,Cramér-Rao下界(Cramér-RaoBound)和Fisher信息(FisherInformation)是两个重要而密切相关的概念。它们在估计理论和信息量度量中发挥着关键作用。本文将深入探讨这两个概念的定义、关系以及它们在统计推断中的应用。Cramér-Rao下界的表达:Cramér-Rao下界(Cramér-Raobound)是统计估计理论中的一个重要概念,它
- 多元高斯分布:条件分布推导
DoYoungExplorer
导航算法及滤波机器学习人工智能算法
在概率统计学中,多元高斯分布是一种非常重要的分布,其条件分布的推导在实际问题中有广泛的应用。本文将详细探讨给定部分变量条件下,多元高斯分布中另一部分变量的条件分布的推导过程。1.多元高斯分布回顾首先,我们回顾一下多元高斯分布的基本形式:其中,Xa和Xb是随机向量的两个部分,μ是均值向量,Σ是协方差矩阵。均值向量:协方差矩阵:此外,使用协方差矩阵的逆矩阵也比较方便,即精度矩阵从而引入精度矩阵2.条件
- 机器学习周刊第五期:一个离谱的数据可视化Python库、可交互式动画学概率统计、机器学习最全文档、快速部署机器学习应用的开源项目、Redis 之父的最新文章
机器学习算法与Python实战
机器学习算法与Python实战机器学习信息可视化python
date:2024/01/08这个网站用可视化的方式讲解概率和统计基础知识,很多内容还是可交互的,非常生动形象。大家好,欢迎收看第五期机器学习周刊本期介绍7个内容,涉及Python、概率统计、机器学习、大模型等,目录如下:一个离谱的Python库看见概率,看见统计2024机器学习最强文档Gradio顶级程序员如何使用LLMTinyLlama微软宣布利用大型语言模型改进文本嵌入1、一个离谱的Pyth
- 线性代数——(期末突击)概率统计习题(概率的性质、全概率公式)
qiyi.sky
线性代数概率论学习笔记
目录概率的性质题一全概率公式题二题三概率的性质有限可加性:若有限个事件互不相容,则单调性:互补性:加法公式:可分性:题一在某城市中共发行三种报纸:甲、乙、丙。在这个城市的居民中,订甲报的有45%,订乙报的有35%,订丙报的有30%,同时订甲、乙两报的有10%,同时订甲、丙两报的有8%,同时订乙、丙两报的有5%,同时订三种报纸的有3%,求下述百分比:(1)只订甲报的;(2)只订甲、乙两报的;(3)只
- 理论U2 贝叶斯决策理论
轩不丢
机器学习机器学习
文章目录一、概率统计理论基础1、乘法公式2、全概率公式3、贝叶斯公式二、贝叶斯决策理论1、用处2、解决问题3、决策基础4、一些概念5、核心公式三、最小错误率贝叶斯决策1、目标2、例题分析3、问题1)决策的风险四、最小风险贝叶斯决策1、背景2、基本概念1)损失函数2)条件期望损失:3)期望风险:3、目标4、决策5、算法步骤6、例题分析五、两种贝叶斯的关系六、朴素贝叶斯决策1、问题2、概念3、例题分析
- 数据结构与算法之美学习笔记:46 | 概率统计:如何利用朴素贝叶斯算法过滤垃圾短信?
浊酒南街
数据结构与算法之美学习笔记算法数据结构
目录前言算法解析总结引申前言本节课程思维导图:上一节我们讲到,如何用位图、布隆过滤器,来过滤重复的数据。今天,我们再讲一个跟过滤相关的问题,如何过滤垃圾短信?垃圾短信和骚扰电话,我想每个人都收到过吧?买房、贷款、投资理财、开发票,各种垃圾短信和骚扰电话,不胜其扰。如果你是一名手机应用开发工程师,让你实现一个简单的垃圾短信过滤功能以及骚扰电话拦截功能,该用什么样的数据结构和算法实现呢?算法解析实际上
- 算法有哪⼏类?
颓特别我废
C语言算法c语言
一、问题按照执⾏功能的不同,可以将算法分为不同的类别,那么算法有哪⼏类?二、解答计算机上的算法按照实现功能可以分为两⼤类:即数值型算法和⾮数值算法。1、数值型算法(NumericalAlgorithms)这类算法主要用于处理数值数据和解决数学问题,它们通常涉及到大量的数学计算,包括但不限于矩阵运算、微积分、线性代数、概率统计、优化问题等。例如,求解方程组的高斯消元法、数值积分方法如辛普森法则、牛顿
- 笔记 | gamma分布
懒麻蛇
机器学习matlabpython人工智能统计学
gamma分布简介大写:Γ小写:γGamma函数在概率统计中频繁现身,众多的统计分布,包括常见的统计学三大分布(t分布,χ2分布,F分布)、Beta分布、Dirichlet分布的密度公式中都有Gamma函数的身影;当然发生最直接联系的概率分布是直接由Gamma函数变换得到的Gamma分布。α称为shapeparameter,主要决定了分布曲线的形状;β称为rateparameter,主要决定曲线有
- 11种概率分布,你了解几个?
小白学视觉
人工智能python编程语言机器学习深度学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达本文转自:视学算法了解常见的概率分布十分必要,它是概率统计的基石。这是昨天推送的从概率统计到深度学习,四大技术路线图谱,都在这里!文章中的第一大技术路线图谱如下所示,图中左侧正是本文要总结的所有常见概率分布。1均匀分布1)离散随机变量的均匀分布:假设X有k个取值:x1,x2,...,xk则均匀分布的概率密度函数为:2)连续随机变
- 《财富自由之路》39-40章
Yixing_seven
1、为什么没有人能准确预测市场价格的短期走向?问题的质量决定答案的质量先定义什么是“准确”,究竟要做到什么程度才算是准确关于二元问题,一般的答案只有“不一定”,或者“不知道”关于“预测”还缺个限定,时间维度不明,是短期预测?还是长期预测?关键结论短期价格预测几乎无法做到对于长期价格的预测,却比较容易,因为“基本面”就放在那里HOW:避免短期思考,一个月记录一次价格,并形成习惯学好并应用概率统计知识
- 揭秘大模型「幻觉」:数据偏差、泛化与上下文理解的挑战与解决之道
数据与后端架构提升之路
大模型深度学习机器学习人工智能
什么是大模型「幻觉」所谓的「幻觉」指的是当大模型生成与现实不符或逻辑上不连贯的信息时。这通常发生在模型对某些数据理解不足或数据本身存在偏差的情况下。由于模型是基于概率统计和以往数据训练的,它们可能在面对未知或少见情况时产生不准确的推断。大模型不具有本地知识所以存在幻觉造成大模型「幻觉」的原因这种现象的产生有多个原因:数据偏差:如果训练数据中存在偏差,模型可能会学习并复制这些偏差。过度泛化:模型可能
- AI技术体系和领域浅总结
TisUs
数学基础微积分《高等数学》线性代数《线性代数》概率统计《概率论与数理统计》信息论《信息论基础》(机械工业出版社)集合论和图论《离散数学》博弈论《博弈论》(中国人民大学出版社)张量分析现代几何计算机基础计算机原理程序设计语言操作系统分布式系统算法基础机器学习算法机器学习基础(估计方法特征工程)线性模型(线性回归)逻辑回归决策树模型(GBDT)支持向量机贝叶斯分类器神经网络(深度学习):MLPCNNR
- 计算机图形学方向的基本能力
每天要吃一桶饭
CG图形学图形学
(1)数学基础:线性代数、概率统计学。在深度学习原理以及图形学的基础的原理,很加分。基本的算法研发能力。(2)综合性的技能:CV、DeepLearning、Interaction(人与自然交互、视觉交互)(3)学习多方面技能,实际应用落地。软硬结合、算法与应用结合。(4)工程化实现!用实际场景来验证算法的可行性,从哪些方面进行优化。(5)兴趣、热情,解决问题!学习的深度。(6)追求系统更加可用、好
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息