- 拉格朗日插值多项式(Lagrange Interpolation)原理 + Python 代码
Illusionna.
python
原理部分见:拉格朗日插值—Homev1.2023.11文档https://illusionna.readthedocs.io/zh/latest/projects/Mathematics/Numerical%20Analysis/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E6%8F%92%E5%80%BC/Lagrange.html代码依赖第三方库:1.numpy2
- PTA 运用顺序表实现多项式相加
方的言*
算法数据结构
本题要求输入两个一元多项式,然后输出它们的和(相加后得到的一元多项式)输入格式:输入一个整数n(表示输入组数),然后依次输入每一组数据:输入一个整数A(表示多项式的项数,小于100),然后输入A对整数,每一对整数表示对应项的指数和系数。输出格式:对每一组输入,在一行中输出得到的一元多项式。输入样例:在这里给出一组输入。例如:25021457710819403264195-9303478230-35
- 洛谷 P1067 [NOIP 2009 普及组] 多项式输出(详解)c++
h^hh
基础算法算法
题目链接:P1067[NOIP2009普及组]多项式输出-洛谷1.题目分析1:5x^4,系数就是5,次项就是42:x^5x^4x^3x^2x3:100x^5-1x^41x^3-3x^20x(省略删除)104:100x^5是正数,不输出+号,-30x^3是负数,输出-5:比如2次项的系数是1,输出x^22.算法原理解法:根据题意模拟即可+分类讨论一项一项输出,每一项关心三个部分:符号+数+次数代码#
- 参数化曲线——参数三次样条曲线(1)
Alpha狼霸
算法机器人数据分析
若已知n+1个数据点pi(i=0,1,...,n)\bm{p}_i(i=0,1,...,n)pi(i=0,1,...,n),构造一条通过这些数据点的参数化多项式曲线,那么曲线方程的待定系数矢量必然等于数据点的个数:p(u)=∑i=0naiuii=0,1,...,n\bm{p}(u)=\sum_{i=0}^{n}\bm{a_i}u^i\qquadi=0,1,...,np(u)=i=0∑naiuii=
- 三、多项式环
Miyazaki_Hayao
一些散乱的数学基础密码学
文章目录一、多项式环的定义二、多项式环的性质1.多项式加法2.多项式乘法3.满足的运算规律4.次数5.单位元三、剩余多项式环(商多项式环)四、有限多项式环五、多项式环的性质与特性1.子环与理想2.不可约性和素性3.有限生成性一、多项式环的定义 多项式环是抽象代数中一种重要的代数结构,基于一个环R(通常是交换环)构造出关于一个或多个未知元(如x,y,z)的“多项式”集合,并在其上定义加法和乘法运算,
- JS宏案例:多项式回归
jackispy
JS宏实例回归数据挖掘
一、基本定义多项式回归是曲线回归的一种,它通过在传统的线性回归模型中增加变量的高次项(如平方项、立方项等),来捕捉数据中的非线性关系。其基本原理是在线性回归的基础上,将自变量的幂次作为新的特征加入模型中,从而使模型能够捕捉到数据的非线性结构。其表达式如下所示:C:表示回归常数k:表示回归系数:表示误差系数n:多项式的阶数与线性回归相比,多项式回归能够拟合数据之间的非线性关系。这种方法的核心思想是,
- 【线代】《线性代数的几何意义》——摘录笔记(四)
jingyu404
线性代数读书及杂言
内容:大多是摘录原书,概括、理解是自己总结的。目的:供自己温习使用,有摘录不全或总结不精的部分。他人学习,仅供参考。目录U6线性方程组1.作用于向量的形式2.解的形式3.解的代数形式4.解的结构5.方程组、矩阵与向量的关系U7二次型1.定义2.表示(多项式与向量)3.用途4.几何意义5.二次型合同对角化6.惯性定理7.正定二次型笔记链接汇总U6线性方程组1.作用于向量的形式(1)看成矩阵对向量(x
- Datawhale 数学建模导论国赛B学习笔记
瓜瓜蛋
数学建模学习笔记
贪心算法贪心算法(Greedyalgorithm)(贪婪算法)基本思想:多机调度问题是一个多项式复杂程度的非确定性问题(Non-deterministicPolynomial),具有一定的复杂程度,当前没有有效的解决方法。相较于其它算法,贪心算法求解不从整体最优上加以考虑,。而是寻求某种意义上的局部最优解,从而做出当下最好的选择。因此,在求解并行机调度问题上,贪心算法容易获得近似最优解的答案,更有
- JS宏进阶:浅谈曲线回归
jackispy
JS宏进阶回归数据挖掘人工智能javascript
曲线回归是一种统计学方法,用于研究两个或多个变量之间的非线性关系,并找到最能拟合数据点的曲线函数形式。与线性回归不同,曲线回归适用于描述那些不是直线性的变量关系。通过曲线回归,可以建立变量之间的非线性数学模型,用于预测和解释各种实际现象。一、基本概念定义:曲线回归是指对于非线性关系的变量进行回归分析的方法。曲线回归方程一般是以自变量的多项式或其他非线性函数形式表达因变量。目的:曲线回归的主要目的是
- 算法基础篇--模拟
近听水无声477
算法
模拟模拟的含义模拟,顾名思义就是题目让你干什么,你就干什么。考察的是将思路转化成代码的代码能⼒。这类题⼀般较为简单,属于竞赛⾥⾯的签到题(但是,万事⽆绝对,也有可能会出现让⼈⾮常难受的模拟题),我们在学习语法阶段接触的题,⼤多数都属于模拟题。现在我们就通过下面的几道题目来了解一下模拟的特点:1.多项式输出题目来源:洛谷题目链接:多项式输出题目就是下面的样子:模拟题没有什么可以详细讲解的思路,大家直
- 极限的定义与求解(微积分前置知识)
Jean·Gunnhildr
Jean带飞你的文化课数学建模高考笔记
文章目录说明第3章极限导论3.1~43.5关于渐近线的两个常见误解3.6三明治定理第4章求解多项式的极限问题4.1x→ax\toax→a时的有理函数的极限4.2x→ax\toax→a时的平方根的极限4.3x→+∞x\to+\inftyx→+∞时的有理函数的极限4.4x→+∞x\to+\inftyx→+∞时多项式型(无理)函数的极限4.5x→−∞x\to-\inftyx→−∞时的有理函数的极限4.6
- PTA 数据结构与算法题目集(中文)
天天向上的菜鸡杰!!
数据结构与算法题目集(中文)算法数据结构
一:数据结构与算法题目(中文版)7-2一元多项式的乘法与加法运算(20分)7-3树的同构(25分)7-4是否同一棵二叉搜索树(25分)7-6列出连通集(25分)(详解)7-7六度空间(30分)7-8哈利·波特的考试(25分)7-14电话聊天狂人(25分)7-15QQ帐户的申请与登陆(25分)7-16一元多项式求导(20分)7-17汉诺塔的非递归实现(25分)7-19求链式线性表的倒数第K项(20分
- 数据结构--线性表的应用(一元多项式的加法)
锊er
数据结构c++算法
用链表表示多项式时,每个链表结点存储多项式中的一一个非零项,包括系数coef指数expon两个数据域,以及一个指针域next。我们采用不带头结点的单链表结构存性一元多项式,并按照指数递减的顺序排列各项。仍以两个多项式P1(x)=9x^2+15x^8+3x^2和P2(x)=26x^9-4x^8-13x^2+82为例。对链表存放的两个多项式进行加法运算,可以使用两个指针p1和p2。初始时,p1和p2分
- PTA:运用顺序表实现多项式相加
WZMeiei
数据结构算法
本题要求输入两个一元多项式,然后输出它们的和(相加后得到的一元多项式)输入格式:输入一个整数n(表示输入组数),然后依次输入每一组数据:输入一个整数A(表示多项式的项数,小于100),然后输入A对整数,每一对整数表示对应项的指数和系数。输出格式:对每一组输入,在一行中输出得到的一元多项式。输入样例:在这里给出一组输入。例如:25021457710819403264195-9303478230-35
- 线性代数导引:实系数和复系数不可约多项式
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
线性代数导引:实系数和复系数不可约多项式关键词:线性代数、实系数多项式、复系数多项式、不可约多项式、代数学基本定理、伽罗瓦理论1.背景介绍1.1问题的由来多项式是数学中一个基础而重要的概念,它不仅在代数学中有着广泛的应用,在几何、物理等领域也有着重要的地位。而研究多项式的可约性,尤其是实系数和复系数多项式的不可约性,对于理解多项式的本质特征具有重要意义。1.2研究现状目前对于实系数和复系数多项式的
- CRC校验码(C#实现)
山歌寥哉
C#
CRC校验(循环冗余校验)小知识CRC即循环冗余校验码(CyclicRedundancyCheck):是数据通信领域中最常用的一种查错校验码,其特征是信息字段和校验字段的长度可以任意选定。循环冗余检查(CRC)是一种数据传输检错功能,对数据进行多项式计算,并将得到的结果附在帧的后面,接收设备也执行类似的算法,以保证数据传输的正确性和完整性。适用规则:CRC-CCITT是一个17位生成多项式G=[1
- r语言 面板数据回归_R语言 之回归分析
你的麦克疯
r语言面板数据回归
回归分析(regressionanalysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。运用十分广泛,下列表格向我们展示了回归的不同类型以及其用途。本章为R语言回归分析之上部分,主要向读者们展示如何运用R语言完成ols(普通最小二乘)回归:简单线性回归、多项式回归、多元线性回归的语言编程示例,以及检验回归分析中统计假设的方法。回归类型用途简单线性用一个量化的解释变量来预测一
- 【CUDA】Pytorch_Extensions
joker D888
深度学习pytorchpythoncudac++深度学习
【CUDA】Pytorch_Extensions为什么要开发CUDA扩展?当我们在PyTorch中实现自定义算子时,通常有两种选择:使用纯Python实现(简单但效率低)使用C++/CUDA扩展(高效但需要编译)对于计算密集型的操作(如神经网络中的自定义激活函数),使用CUDA扩展可以获得接近硬件极限的性能。本文将以实现一个多项式激活函数x²+x+1为例,展示完整的开发流程。完整CUDA扩展代码解
- Winograd 算法原理推导和python程序
weixin_47696437
算法python人工智能
一、算法背景Winograd算法是一种用于高效计算卷积的算法,其核心思想是通过减少乘法运算的次数来提高卷积计算的效率。在传统的卷积计算中,乘法运算的开销较大,而Winograd算法通过巧妙的变换,将卷积运算转化为在变换域中的矩阵乘法,从而减少乘法的数量,虽然会引入一些额外的加法和变换操作,但整体上在计算效率上有显著提升。二、一维卷积的Winograd推导2.Winograd优化通过多项式变换减少乘
- 后量子密码学:量子安全新防线
量子信使
量子计算密码学信息与通信深度学习安全算法机器学习
目录背景主要算法介绍基于格的密码学格的概念格密码学中的难题加密和解密过程基于多变量多项式的密码学多变量多项式基础多变量多项式密码学中的难题加密和签名过程基于编码的密码学纠错码简介编码密码学中的难题加密和解密过程安全性分析传统密码学算法在量子计算环境下的安全性RSA算法的破解风险椭圆曲线密码算法的脆弱性后量子密码学算法的安全性评估基于格的密码学算法基于多变量多项式的密码学算法基于编码的密码学算法后量
- 求解插值多项式及其余项表达式
F_D_Z
数理数值分析插值多项式
例求满足P(xj)=f(xj)P(x_j)=f(x_j)P(xj)=f(xj)(j=0,1,2j=0,1,2j=0,1,2)及P′(x1)=f′(x1)P'(x_1)=f'(x_1)P′(x1)=f′(x1)的插值多项式及其余项表达式。解:由给定条件,可确定次数不超过3的插值多项式。此多项式通过点(x0,f(x0)),(x1,f(x1))(x_0,f(x_0)),(x_1,f(x_1))(x0,f
- 量子计算机可以破解比特币吗
weixin_49526058
量子计算区块链智能合约信任链去中心化分布式账本web3
量子计算机可能会对当前的加密算法(包括比特币使用的椭圆曲线加密)带来极大的挑战,尤其是因为它能够使用Shor算法高效地解决离散对数问题。然而,具体到量子计算机破解比特币私钥的情况,需要从以下几个方面深入理解:1.Shor算法与离散对数问题Shor算法是由数学家彼得·肖(PeterShor)在1994年提出的一种量子算法,它可以在多项式时间内解决两类经典计算机难以处理的问题:整数分解问题:这涉及RS
- 拉格朗日插值
一条大祥脚
算法
你如果能确定一个问题答案一定是一个多项式形式,那么你可以先暴力求出来几个点的解,带入,把这个多项式的系数求出来,接下来给出自变量的话,你直接往这个式子里带入就能得到答案了。具体的原理就是oiwiki上的这个过程这里需要注意的是,对于一个最高次为k的多项式,至少需要k+1个不同的点才能确定全部系数。求系数的过程暴力是O(n2)O(n^2)O(n2)的,这要求我们多项式次数不能太大。不过对于连续的数据
- 内点法在线性规划中的应用:从理论到实践
ningaiiii
机器学习与深度学习python算法
内点法在线性规划中的应用:从理论到实践1.引言内点法(InteriorPointMethod)是求解线性规划问题的另一个重要算法。与单纯形法沿着可行域边界移动不同,内点法通过在可行域内部直接逼近最优解。这种方法最早由Karmarkar在1984年提出,为大规模优化问题提供了一个多项式时间的解决方案。本文将深入探讨内点法的原理和实现,并通过实例展示其在实际优化问题中的应用。2.理论基础2.1线性规划
- 机器学习: 逻辑回归
小源学AI
人工智能机器学习逻辑回归人工智能
概念与定义逻辑回归是一种用于分类问题的统计方法。它通过计算目标变量的概率来预测类别归属,并假设数据服从伯努利分布(二分类)或多项式分布(多分类)。逻辑回归模型输出的是概率值,通常使用sigmoid函数将线性组合映射到0和1之间。1.概念逻辑回归用于解决分类问题,特别是二分类问题。它通过估计输入变量与目标变量之间的关系来预测目标变量的类别。2.定义逻辑回归是一种广义线性模型,其核心思想是将线性组合通
- 图像拉格朗日插值法matlab_matlab – 拉格朗日插值方法
华亿
图像拉格朗日插值法matlab
是的,一些建议(在下面的版本1中实现):if循环可以与上面的组合(只需通过下面的jr(jr~=j)使索引跳过k);polynomialSize总是等长(outputConv),它总是等于n(因为你有n个数据点,第n-1个多项式有n个系数),所以最后一个for循环和下一个行也可以用简单的L(k,=乘数*outputConv;所以我在http://en.wikipedia.org/wiki/Lagra
- Aitken 逐次线性插值
F_D_Z
数理数值分析Aitken逐次线性插值
Aitken逐次线性插值用Lagrange插值多项式Ln(x)L_n(x)Ln(x)计算函数近似值时,如需增加插值节点,那么原来算出的数据均不能利用,必须重新计算。为克服这个缺点,可用逐次线性插值方法求得高次插值。令Ii1,i2,...,in(x)I_{{i_1},{i_2},...,i_n(x)}Ii1,i2,...,in(x)表示函数f(x)f(x)f(x)关于节点xi1,xi2,⋅⋅⋅,xi
- 机器学习数学基础:8.泰勒公式
@心都
机器学习数学基础机器学习人工智能
一、泰勒公式的由来:为啥我们需要它?同学们,想象一下,你拿到了一块超级复杂、弯弯曲曲,就像一团乱麻似的拼图(假设这拼图代表一个复杂函数,比如一条有各种起伏的波浪线),而你手头只有一些简单的积木块(这里的积木块就是多项式啦),现在要你用这些简单积木拼出拼图的模样,是不是感觉无从下手?这时候,泰勒公式就像一位智慧的导师闪亮登场,它会告诉你:“别慌,孩子,我来教你怎么挑选积木块,怎么决定它们的形状和大小
- 【深度学习】权重衰减
熙曦Sakura
深度学习深度学习人工智能
权重衰减前一节我们描述了过拟合的问题,本节我们将介绍一些正则化模型的技术。我们总是可以通过去收集更多的训练数据来缓解过拟合。但这可能成本很高,耗时颇多,或者完全超出我们的控制,因而在短期内不可能做到。假设我们已经拥有尽可能多的高质量数据,我们便可以将重点放在正则化技术上。回想一下,在多项式回归的例子中,我们可以通过调整拟合多项式的阶数来限制模型的容量。实际上,限制特征的数量是缓解过拟合的一种常用技
- 如何利用矩阵化简平面上的二次型曲线
原装穿山乙思密达
解析几何矩阵高等代数解析几何线性代数
文章目录二次型曲线的定义将二次型曲线写成矩阵形式通过移轴,进一步化简方程情况1:特征值ω1,ω2\omega_1,\omega_2ω1,ω2同号情况2:特征值ω1,ω2\omega_1,\omega_2ω1,ω2异号情况3:特征值ω1,ω2\omega_1,\omega_2ω1,ω2有且仅有一个为0总结二次型曲线的定义在二维欧氏平面上,一个二次型曲线是一个关于x,yx,yx,y的二元二次多项式:F
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默