spark-submit的参数传递源码分析

版本:spark2.3

相关源码:org.apache.spark.deploy.SparkSubmitArguments

作用:解析并封装spark-submit脚本传递的参数

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.deploy

import java.io.{ByteArrayOutputStream, PrintStream}
import java.lang.reflect.InvocationTargetException
import java.net.URI
import java.nio.charset.StandardCharsets
import java.util.{List => JList}
import java.util.jar.JarFile

import scala.collection.JavaConverters._
import scala.collection.mutable.{ArrayBuffer, HashMap}
import scala.io.Source
import scala.util.Try

import org.apache.spark.deploy.SparkSubmitAction._
import org.apache.spark.launcher.SparkSubmitArgumentsParser
import org.apache.spark.network.util.JavaUtils
import org.apache.spark.util.Utils


/**
 * Parses and encapsulates arguments from the spark-submit script.
 * The env argument is used for testing.
 */
private[deploy] class SparkSubmitArguments(args: Seq[String], env: Map[String, String] = sys.env)
  extends SparkSubmitArgumentsParser {
  var master: String = null
  var deployMode: String = null
  var executorMemory: String = null
  var executorCores: String = null
  var totalExecutorCores: String = null
  var propertiesFile: String = null
  var driverMemory: String = null
  var driverExtraClassPath: String = null
  var driverExtraLibraryPath: String = null
  var driverExtraJavaOptions: String = null
  var queue: String = null
  var numExecutors: String = null
  var files: String = null
  var archives: String = null
  var mainClass: String = null
  var primaryResource: String = null
  var name: String = null
  var childArgs: ArrayBuffer[String] = new ArrayBuffer[String]()
  var jars: String = null
  var packages: String = null
  var repositories: String = null
  var ivyRepoPath: String = null
  var ivySettingsPath: Option[String] = None
  var packagesExclusions: String = null
  var verbose: Boolean = false
  var isPython: Boolean = false
  var pyFiles: String = null
  var isR: Boolean = false
  var action: SparkSubmitAction = null
  val sparkProperties: HashMap[String, String] = new HashMap[String, String]()
  var proxyUser: String = null
  var principal: String = null
  var keytab: String = null

  // Standalone cluster mode only
  var supervise: Boolean = false
  var driverCores: String = null
  var submissionToKill: String = null
  var submissionToRequestStatusFor: String = null
  var useRest: Boolean = true // used internally

  /** Default properties present in the currently defined defaults file. */
  lazy val defaultSparkProperties: HashMap[String, String] = {
    val defaultProperties = new HashMap[String, String]()
    // scalastyle:off println
    if (verbose) SparkSubmit.printStream.println(s"Using properties file: $propertiesFile")
    Option(propertiesFile).foreach { filename =>
      val properties = Utils.getPropertiesFromFile(filename)
      properties.foreach { case (k, v) =>
        defaultProperties(k) = v
      }
      // Property files may contain sensitive information, so redact before printing
      if (verbose) {
        Utils.redact(properties).foreach { case (k, v) =>
          SparkSubmit.printStream.println(s"Adding default property: $k=$v")
        }
      }
    }
    // scalastyle:on println
    defaultProperties
  }

  // Set parameters from command line arguments
  try {
    parse(args.asJava)
  } catch {
    case e: IllegalArgumentException =>
      SparkSubmit.printErrorAndExit(e.getMessage())
  }
  // Populate `sparkProperties` map from properties file
  mergeDefaultSparkProperties()
  // Remove keys that don't start with "spark." from `sparkProperties`.
  ignoreNonSparkProperties()
  // Use `sparkProperties` map along with env vars to fill in any missing parameters
  loadEnvironmentArguments()

  validateArguments()

  /**
   * Merge values from the default properties file with those specified through --conf.
   * When this is called, `sparkProperties` is already filled with configs from the latter.
   */
  private def mergeDefaultSparkProperties(): Unit = {
    // Use common defaults file, if not specified by user
    propertiesFile = Option(propertiesFile).getOrElse(Utils.getDefaultPropertiesFile(env))
    // Honor --conf before the defaults file
    defaultSparkProperties.foreach { case (k, v) =>
      if (!sparkProperties.contains(k)) {
        sparkProperties(k) = v
      }
    }
  }

  /**
   * Remove keys that don'"t start with "spark. from `sparkProperties`.
   */
  private def ignoreNonSparkProperties(): Unit = {
    sparkProperties.foreach { case (k, v) =>
      if (!k.startsWith("spark.")) {
        sparkProperties -= k
        SparkSubmit.printWarning(s"Ignoring non-spark config property: $k=$v")
      }
    }
  }

  /**
   * Load arguments from environment variables, Spark properties etc.
   */
  private def loadEnvironmentArguments(): Unit = {
    master = Option(master)
      .orElse(sparkProperties.get("spark.master"))
      .orElse(env.get("MASTER"))
      .orNull
    driverExtraClassPath = Option(driverExtraClassPath)
      .orElse(sparkProperties.get("spark.driver.extraClassPath"))
      .orNull
    driverExtraJavaOptions = Option(driverExtraJavaOptions)
      .orElse(sparkProperties.get("spark.driver.extraJavaOptions"))
      .orNull
    driverExtraLibraryPath = Option(driverExtraLibraryPath)
      .orElse(sparkProperties.get("spark.driver.extraLibraryPath"))
      .orNull
    driverMemory = Option(driverMemory)
      .orElse(sparkProperties.get("spark.driver.memory"))
      .orElse(env.get("SPARK_DRIVER_MEMORY"))
      .orNull
    driverCores = Option(driverCores)
      .orElse(sparkProperties.get("spark.driver.cores"))
      .orNull
    executorMemory = Option(executorMemory)
      .orElse(sparkProperties.get("spark.executor.memory"))
      .orElse(env.get("SPARK_EXECUTOR_MEMORY"))
      .orNull
    executorCores = Option(executorCores)
      .orElse(sparkProperties.get("spark.executor.cores"))
      .orElse(env.get("SPARK_EXECUTOR_CORES"))
      .orNull
    totalExecutorCores = Option(totalExecutorCores)
      .orElse(sparkProperties.get("spark.cores.max"))
      .orNull
    name = Option(name).orElse(sparkProperties.get("spark.app.name")).orNull
    jars = Option(jars).orElse(sparkProperties.get("spark.jars")).orNull
    files = Option(files).orElse(sparkProperties.get("spark.files")).orNull
    ivyRepoPath = sparkProperties.get("spark.jars.ivy").orNull
    ivySettingsPath = sparkProperties.get("spark.jars.ivySettings")
    packages = Option(packages).orElse(sparkProperties.get("spark.jars.packages")).orNull
    packagesExclusions = Option(packagesExclusions)
      .orElse(sparkProperties.get("spark.jars.excludes")).orNull
    repositories = Option(repositories)
      .orElse(sparkProperties.get("spark.jars.repositories")).orNull
    deployMode = Option(deployMode)
      .orElse(sparkProperties.get("spark.submit.deployMode"))
      .orElse(env.get("DEPLOY_MODE"))
      .orNull
    numExecutors = Option(numExecutors)
      .getOrElse(sparkProperties.get("spark.executor.instances").orNull)
    queue = Option(queue).orElse(sparkProperties.get("spark.yarn.queue")).orNull
    keytab = Option(keytab).orElse(sparkProperties.get("spark.yarn.keytab")).orNull
    principal = Option(principal).orElse(sparkProperties.get("spark.yarn.principal")).orNull

    // Try to set main class from JAR if no --class argument is given
    if (mainClass == null && !isPython && !isR && primaryResource != null) {
      val uri = new URI(primaryResource)
      val uriScheme = uri.getScheme()

      uriScheme match {
        case "file" =>
          try {
            Utils.tryWithResource(new JarFile(uri.getPath)) { jar =>
              // Note that this might still return null if no main-class is set; we catch that later
              mainClass = jar.getManifest.getMainAttributes.getValue("Main-Class")
            }
          } catch {
            case _: Exception =>
              SparkSubmit.printErrorAndExit(s"Cannot load main class from JAR $primaryResource")
          }
        case _ =>
          SparkSubmit.printErrorAndExit(
            s"Cannot load main class from JAR $primaryResource with URI $uriScheme. " +
            "Please specify a class through --class.")
      }
    }

    // Global defaults. These should be keep to minimum to avoid confusing behavior.
    master = Option(master).getOrElse("local[*]")

    // In YARN mode, app name can be set via SPARK_YARN_APP_NAME (see SPARK-5222)
    if (master.startsWith("yarn")) {
      name = Option(name).orElse(env.get("SPARK_YARN_APP_NAME")).orNull
    }

    // Set name from main class if not given
    name = Option(name).orElse(Option(mainClass)).orNull
    if (name == null && primaryResource != null) {
      name = Utils.stripDirectory(primaryResource)
    }

    // Action should be SUBMIT unless otherwise specified
    action = Option(action).getOrElse(SUBMIT)
  }

  /** Ensure that required fields exists. Call this only once all defaults are loaded. */
  private def validateArguments(): Unit = {
    action match {
      case SUBMIT => validateSubmitArguments()
      case KILL => validateKillArguments()
      case REQUEST_STATUS => validateStatusRequestArguments()
    }
  }

  private def validateSubmitArguments(): Unit = {
    if (args.length == 0) {
      printUsageAndExit(-1)
    }
    if (primaryResource == null) {
      SparkSubmit.printErrorAndExit("Must specify a primary resource (JAR or Python or R file)")
    }
    if (mainClass == null && SparkSubmit.isUserJar(primaryResource)) {
      SparkSubmit.printErrorAndExit("No main class set in JAR; please specify one with --class")
    }
    if (driverMemory != null
        && Try(JavaUtils.byteStringAsBytes(driverMemory)).getOrElse(-1L) <= 0) {
      SparkSubmit.printErrorAndExit("Driver Memory must be a positive number")
    }
    if (executorMemory != null
        && Try(JavaUtils.byteStringAsBytes(executorMemory)).getOrElse(-1L) <= 0) {
      SparkSubmit.printErrorAndExit("Executor Memory cores must be a positive number")
    }
    if (executorCores != null && Try(executorCores.toInt).getOrElse(-1) <= 0) {
      SparkSubmit.printErrorAndExit("Executor cores must be a positive number")
    }
    if (totalExecutorCores != null && Try(totalExecutorCores.toInt).getOrElse(-1) <= 0) {
      SparkSubmit.printErrorAndExit("Total executor cores must be a positive number")
    }
    if (numExecutors != null && Try(numExecutors.toInt).getOrElse(-1) <= 0) {
      SparkSubmit.printErrorAndExit("Number of executors must be a positive number")
    }
    if (pyFiles != null && !isPython) {
      SparkSubmit.printErrorAndExit("--py-files given but primary resource is not a Python script")
    }

    if (master.startsWith("yarn")) {
      val hasHadoopEnv = env.contains("HADOOP_CONF_DIR") || env.contains("YARN_CONF_DIR")
      if (!hasHadoopEnv && !Utils.isTesting) {
        throw new Exception(s"When running with master '$master' " +
          "either HADOOP_CONF_DIR or YARN_CONF_DIR must be set in the environment.")
      }
    }

    if (proxyUser != null && principal != null) {
      SparkSubmit.printErrorAndExit("Only one of --proxy-user or --principal can be provided.")
    }
  }

  private def validateKillArguments(): Unit = {
    if (!master.startsWith("spark://") && !master.startsWith("mesos://")) {
      SparkSubmit.printErrorAndExit(
        "Killing submissions is only supported in standalone or Mesos mode!")
    }
    if (submissionToKill == null) {
      SparkSubmit.printErrorAndExit("Please specify a submission to kill.")
    }
  }

  private def validateStatusRequestArguments(): Unit = {
    if (!master.startsWith("spark://") && !master.startsWith("mesos://")) {
      SparkSubmit.printErrorAndExit(
        "Requesting submission statuses is only supported in standalone or Mesos mode!")
    }
    if (submissionToRequestStatusFor == null) {
      SparkSubmit.printErrorAndExit("Please specify a submission to request status for.")
    }
  }

  def isStandaloneCluster: Boolean = {
    master.startsWith("spark://") && deployMode == "cluster"
  }

  override def toString: String = {
    s"""Parsed arguments:
    |  master                  $master
    |  deployMode              $deployMode
    |  executorMemory          $executorMemory
    |  executorCores           $executorCores
    |  totalExecutorCores      $totalExecutorCores
    |  propertiesFile          $propertiesFile
    |  driverMemory            $driverMemory
    |  driverCores             $driverCores
    |  driverExtraClassPath    $driverExtraClassPath
    |  driverExtraLibraryPath  $driverExtraLibraryPath
    |  driverExtraJavaOptions  $driverExtraJavaOptions
    |  supervise               $supervise
    |  queue                   $queue
    |  numExecutors            $numExecutors
    |  files                   $files
    |  pyFiles                 $pyFiles
    |  archives                $archives
    |  mainClass               $mainClass
    |  primaryResource         $primaryResource
    |  name                    $name
    |  childArgs               [${childArgs.mkString(" ")}]
    |  jars                    $jars
    |  packages                $packages
    |  packagesExclusions      $packagesExclusions
    |  repositories            $repositories
    |  verbose                 $verbose
    |
    |Spark properties used, including those specified through
    | --conf and those from the properties file $propertiesFile:
    |${Utils.redact(sparkProperties).mkString("  ", "\n  ", "\n")}
    """.stripMargin
  }

  /** Fill in values by parsing user options. */
  override protected def handle(opt: String, value: String): Boolean = {
    opt match {
      case NAME =>
        name = value

      case MASTER =>
        master = value

      case CLASS =>
        mainClass = value

      case DEPLOY_MODE =>
        if (value != "client" && value != "cluster") {
          SparkSubmit.printErrorAndExit("--deploy-mode must be either \"client\" or \"cluster\"")
        }
        deployMode = value

      case NUM_EXECUTORS =>
        numExecutors = value

      case TOTAL_EXECUTOR_CORES =>
        totalExecutorCores = value

      case EXECUTOR_CORES =>
        executorCores = value

      case EXECUTOR_MEMORY =>
        executorMemory = value

      case DRIVER_MEMORY =>
        driverMemory = value

      case DRIVER_CORES =>
        driverCores = value

      case DRIVER_CLASS_PATH =>
        driverExtraClassPath = value

      case DRIVER_JAVA_OPTIONS =>
        driverExtraJavaOptions = value

      case DRIVER_LIBRARY_PATH =>
        driverExtraLibraryPath = value

      case PROPERTIES_FILE =>
        propertiesFile = value

      case KILL_SUBMISSION =>
        submissionToKill = value
        if (action != null) {
          SparkSubmit.printErrorAndExit(s"Action cannot be both $action and $KILL.")
        }
        action = KILL

      case STATUS =>
        submissionToRequestStatusFor = value
        if (action != null) {
          SparkSubmit.printErrorAndExit(s"Action cannot be both $action and $REQUEST_STATUS.")
        }
        action = REQUEST_STATUS

      case SUPERVISE =>
        supervise = true

      case QUEUE =>
        queue = value

      case FILES =>
        files = Utils.resolveURIs(value)

      case PY_FILES =>
        pyFiles = Utils.resolveURIs(value)

      case ARCHIVES =>
        archives = Utils.resolveURIs(value)

      case JARS =>
        jars = Utils.resolveURIs(value)

      case PACKAGES =>
        packages = value

      case PACKAGES_EXCLUDE =>
        packagesExclusions = value

      case REPOSITORIES =>
        repositories = value

      case CONF =>
        val (confName, confValue) = SparkSubmit.parseSparkConfProperty(value)
        sparkProperties(confName) = confValue

      case PROXY_USER =>
        proxyUser = value

      case PRINCIPAL =>
        principal = value

      case KEYTAB =>
        keytab = value

      case HELP =>
        printUsageAndExit(0)

      case VERBOSE =>
        verbose = true

      case VERSION =>
        SparkSubmit.printVersionAndExit()

      case USAGE_ERROR =>
        printUsageAndExit(1)

      case _ =>
        throw new IllegalArgumentException(s"Unexpected argument '$opt'.")
    }
    true
  }

  /**
   * Handle unrecognized command line options.
   *
   * The first unrecognized option is treated as the "primary resource". Everything else is
   * treated as application arguments.
   */
  override protected def handleUnknown(opt: String): Boolean = {
    if (opt.startsWith("-")) {
      SparkSubmit.printErrorAndExit(s"Unrecognized option '$opt'.")
    }

    primaryResource =
      if (!SparkSubmit.isShell(opt) && !SparkSubmit.isInternal(opt)) {
        Utils.resolveURI(opt).toString
      } else {
        opt
      }
    isPython = SparkSubmit.isPython(opt)
    isR = SparkSubmit.isR(opt)
    false
  }

  override protected def handleExtraArgs(extra: JList[String]): Unit = {
    childArgs ++= extra.asScala
  }

  private def printUsageAndExit(exitCode: Int, unknownParam: Any = null): Unit = {
    // scalastyle:off println
    val outStream = SparkSubmit.printStream
    if (unknownParam != null) {
      outStream.println("Unknown/unsupported param " + unknownParam)
    }
    val command = sys.env.get("_SPARK_CMD_USAGE").getOrElse(
      """Usage: spark-submit [options]  [app arguments]
        |Usage: spark-submit --kill [submission ID] --master [spark://...]
        |Usage: spark-submit --status [submission ID] --master [spark://...]
        |Usage: spark-submit run-example [options] example-class [example args]""".stripMargin)
    outStream.println(command)

    val mem_mb = Utils.DEFAULT_DRIVER_MEM_MB
    outStream.println(
      s"""
        |Options:
        |  --master MASTER_URL         spark://host:port, mesos://host:port, yarn,
        |                              k8s://https://host:port, or local (Default: local[*]).
        |  --deploy-mode DEPLOY_MODE   Whether to launch the driver program locally ("client") or
        |                              on one of the worker machines inside the cluster ("cluster")
        |                              (Default: client).
        |  --class CLASS_NAME          Your application's main class (for Java / Scala apps).
        |  --name NAME                 A name of your application.
        |  --jars JARS                 Comma-separated list of jars to include on the driver
        |                              and executor classpaths.
        |  --packages                  Comma-separated list of maven coordinates of jars to include
        |                              on the driver and executor classpaths. Will search the local
        |                              maven repo, then maven central and any additional remote
        |                              repositories given by --repositories. The format for the
        |                              coordinates should be groupId:artifactId:version.
        |  --exclude-packages          Comma-separated list of groupId:artifactId, to exclude while
        |                              resolving the dependencies provided in --packages to avoid
        |                              dependency conflicts.
        |  --repositories              Comma-separated list of additional remote repositories to
        |                              search for the maven coordinates given with --packages.
        |  --py-files PY_FILES         Comma-separated list of .zip, .egg, or .py files to place
        |                              on the PYTHONPATH for Python apps.
        |  --files FILES               Comma-separated list of files to be placed in the working
        |                              directory of each executor. File paths of these files
        |                              in executors can be accessed via SparkFiles.get(fileName).
        |
        |  --conf PROP=VALUE           Arbitrary Spark configuration property.
        |  --properties-file FILE      Path to a file from which to load extra properties. If not
        |                              specified, this will look for conf/spark-defaults.conf.
        |
        |  --driver-memory MEM         Memory for driver (e.g. 1000M, 2G) (Default: ${mem_mb}M).
        |  --driver-java-options       Extra Java options to pass to the driver.
        |  --driver-library-path       Extra library path entries to pass to the driver.
        |  --driver-class-path         Extra class path entries to pass to the driver. Note that
        |                              jars added with --jars are automatically included in the
        |                              classpath.
        |
        |  --executor-memory MEM       Memory per executor (e.g. 1000M, 2G) (Default: 1G).
        |
        |  --proxy-user NAME           User to impersonate when submitting the application.
        |                              This argument does not work with --principal / --keytab.
        |
        |  --help, -h                  Show this help message and exit.
        |  --verbose, -v               Print additional debug output.
        |  --version,                  Print the version of current Spark.
        |
        | Cluster deploy mode only:
        |  --driver-cores NUM          Number of cores used by the driver, only in cluster mode
        |                              (Default: 1).
        |
        | Spark standalone or Mesos with cluster deploy mode only:
        |  --supervise                 If given, restarts the driver on failure.
        |  --kill SUBMISSION_ID        If given, kills the driver specified.
        |  --status SUBMISSION_ID      If given, requests the status of the driver specified.
        |
        | Spark standalone and Mesos only:
        |  --total-executor-cores NUM  Total cores for all executors.
        |
        | Spark standalone and YARN only:
        |  --executor-cores NUM        Number of cores per executor. (Default: 1 in YARN mode,
        |                              or all available cores on the worker in standalone mode)
        |
        | YARN-only:
        |  --queue QUEUE_NAME          The YARN queue to submit to (Default: "default").
        |  --num-executors NUM         Number of executors to launch (Default: 2).
        |                              If dynamic allocation is enabled, the initial number of
        |                              executors will be at least NUM.
        |  --archives ARCHIVES         Comma separated list of archives to be extracted into the
        |                              working directory of each executor.
        |  --principal PRINCIPAL       Principal to be used to login to KDC, while running on
        |                              secure HDFS.
        |  --keytab KEYTAB             The full path to the file that contains the keytab for the
        |                              principal specified above. This keytab will be copied to
        |                              the node running the Application Master via the Secure
        |                              Distributed Cache, for renewing the login tickets and the
        |                              delegation tokens periodically.
      """.stripMargin
    )

    if (SparkSubmit.isSqlShell(mainClass)) {
      outStream.println("CLI options:")
      outStream.println(getSqlShellOptions())
    }
    // scalastyle:on println

    SparkSubmit.exitFn(exitCode)
  }

  /**
   * Run the Spark SQL CLI main class with the "--help" option and catch its output. Then filter
   * the results to remove unwanted lines.
   *
   * Since the CLI will call `System.exit()`, we install a security manager to prevent that call
   * from working, and restore the original one afterwards.
   */
  private def getSqlShellOptions(): String = {
    val currentOut = System.out
    val currentErr = System.err
    val currentSm = System.getSecurityManager()
    try {
      val out = new ByteArrayOutputStream()
      val stream = new PrintStream(out)
      System.setOut(stream)
      System.setErr(stream)

      val sm = new SecurityManager() {
        override def checkExit(status: Int): Unit = {
          throw new SecurityException()
        }

        override def checkPermission(perm: java.security.Permission): Unit = {}
      }
      System.setSecurityManager(sm)

      try {
        Utils.classForName(mainClass).getMethod("main", classOf[Array[String]])
          .invoke(null, Array(HELP))
      } catch {
        case e: InvocationTargetException =>
          // Ignore SecurityException, since we throw it above.
          if (!e.getCause().isInstanceOf[SecurityException]) {
            throw e
          }
      }

      stream.flush()

      // Get the output and discard any unnecessary lines from it.
      Source.fromString(new String(out.toByteArray(), StandardCharsets.UTF_8)).getLines
        .filter { line =>
          !line.startsWith("log4j") && !line.startsWith("usage")
        }
        .mkString("\n")
    } finally {
      System.setSecurityManager(currentSm)
      System.setOut(currentOut)
      System.setErr(currentErr)
    }
  }
}
SparkSubmitArguments.scala

 

主要代码逻辑

defaultSparkProperties 通过当前定义的默认配置文件载入相关属性。使用lazy关键字修饰,只有在使用该变量时,才会调用其方法

/** Default properties present in the currently defined defaults file. */
  lazy val defaultSparkProperties: HashMap[String, String] = {
    val defaultProperties = new HashMap[String, String]()
    // scalastyle:off println
    if (verbose) SparkSubmit.printStream.println(s"Using properties file: $propertiesFile")
    Option(propertiesFile).foreach { filename =>
      val properties = Utils.getPropertiesFromFile(filename)
      properties.foreach { case (k, v) =>
        defaultProperties(k) = v
      }
      // Property files may contain sensitive information, so redact before printing
      if (verbose) {
        Utils.redact(properties).foreach { case (k, v) =>
          SparkSubmit.printStream.println(s"Adding default property: $k=$v")
        }
      }
    }
    // scalastyle:on println
    defaultProperties
  }

 

parse(args.asJava) 先对spark-submit 命令行提交的参数进行解析

  // Set parameters from command line arguments
  try {
    parse(args.asJava)
  } catch {
    case e: IllegalArgumentException =>
      SparkSubmit.printErrorAndExit(e.getMessage())
  }

 

mergeDefaultSparkProperties() 将配置文件中的属性保存到sparkProperties变量(是一个HashMap[String, String])中

如果用户没有指定配置文件,则使用默认的spark-defaults.conf

  /**
   * Merge values from the default properties file with those specified through --conf.
   * When this is called, `sparkProperties` is already filled with configs from the latter.
   * 
   */
  private def mergeDefaultSparkProperties(): Unit = {
    // Use common defaults file, if not specified by user 默认的是spark-defaults.conf
    propertiesFile = Option(propertiesFile).getOrElse(Utils.getDefaultPropertiesFile(env))
    // Honor --conf before the defaults file
    defaultSparkProperties.foreach { case (k, v) =>
      if (!sparkProperties.contains(k)) {
        sparkProperties(k) = v
      }
    }
  }

ignoreNonSparkProperties() 将不是以"spark."开头的属性删除

  /**
   * Remove keys that don'"t start with "spark. from `sparkProperties`.
   */
  private def ignoreNonSparkProperties(): Unit = {
    sparkProperties.foreach { case (k, v) =>
      if (!k.startsWith("spark.")) {
        sparkProperties -= k
        SparkSubmit.printWarning(s"Ignoring non-spark config property: $k=$v")
      }
    }
  }

loadEnvironmentArguments() 加载参数

其中需要了解:

  1. Try to set main class from JAR if no --class argument is given
  2. master = Option(master).getOrElse("local[*]") //Global defaults. These should be keep to minimum to avoid confusing behavior.
  3. Action should be SUBMIT unless otherwise specified

ps:在这里也可以看到命令行传入的参数在代码中是使用哪个参数值来接收的,比如--files是使用spark.files

 /**
   * Load arguments from environment variables, Spark properties etc.
   */
  private def loadEnvironmentArguments(): Unit = {
    //如果spark-submit接收的Option(master)为None,值为sparkConf中的sparkProperties.get("spark.master"),如果也为None,值为当前系统环境的env.get("MASTER")
    master = Option(master)
      .orElse(sparkProperties.get("spark.master"))
      .orElse(env.get("MASTER"))
      .orNull
    driverExtraClassPath = Option(driverExtraClassPath)
      .orElse(sparkProperties.get("spark.driver.extraClassPath"))
      .orNull
    driverExtraJavaOptions = Option(driverExtraJavaOptions)
      .orElse(sparkProperties.get("spark.driver.extraJavaOptions"))
      .orNull
    driverExtraLibraryPath = Option(driverExtraLibraryPath)
      .orElse(sparkProperties.get("spark.driver.extraLibraryPath"))
      .orNull
    driverMemory = Option(driverMemory)
      .orElse(sparkProperties.get("spark.driver.memory"))
      .orElse(env.get("SPARK_DRIVER_MEMORY"))
      .orNull
    driverCores = Option(driverCores)
      .orElse(sparkProperties.get("spark.driver.cores"))
      .orNull
    executorMemory = Option(executorMemory)
      .orElse(sparkProperties.get("spark.executor.memory"))
      .orElse(env.get("SPARK_EXECUTOR_MEMORY"))
      .orNull
    executorCores = Option(executorCores)
      .orElse(sparkProperties.get("spark.executor.cores"))
      .orElse(env.get("SPARK_EXECUTOR_CORES"))
      .orNull
    totalExecutorCores = Option(totalExecutorCores)
      .orElse(sparkProperties.get("spark.cores.max"))
      .orNull
    name = Option(name).orElse(sparkProperties.get("spark.app.name")).orNull
    jars = Option(jars).orElse(sparkProperties.get("spark.jars")).orNull
    files = Option(files).orElse(sparkProperties.get("spark.files")).orNull
    ivyRepoPath = sparkProperties.get("spark.jars.ivy").orNull
    ivySettingsPath = sparkProperties.get("spark.jars.ivySettings")
    packages = Option(packages).orElse(sparkProperties.get("spark.jars.packages")).orNull
    packagesExclusions = Option(packagesExclusions)
      .orElse(sparkProperties.get("spark.jars.excludes")).orNull
    repositories = Option(repositories)
      .orElse(sparkProperties.get("spark.jars.repositories")).orNull
    deployMode = Option(deployMode)
      .orElse(sparkProperties.get("spark.submit.deployMode"))
      .orElse(env.get("DEPLOY_MODE"))
      .orNull
    numExecutors = Option(numExecutors)
      .getOrElse(sparkProperties.get("spark.executor.instances").orNull)
    queue = Option(queue).orElse(sparkProperties.get("spark.yarn.queue")).orNull
    keytab = Option(keytab).orElse(sparkProperties.get("spark.yarn.keytab")).orNull
    principal = Option(principal).orElse(sparkProperties.get("spark.yarn.principal")).orNull

    // Try to set main class from JAR if no --class argument is given
    if (mainClass == null && !isPython && !isR && primaryResource != null) {
      val uri = new URI(primaryResource)
      val uriScheme = uri.getScheme()

      uriScheme match {
        case "file" =>
          try {
            Utils.tryWithResource(new JarFile(uri.getPath)) { jar =>
              // Note that this might still return null if no main-class is set; we catch that later
              mainClass = jar.getManifest.getMainAttributes.getValue("Main-Class")
            }
          } catch {
            case _: Exception =>
              SparkSubmit.printErrorAndExit(s"Cannot load main class from JAR $primaryResource")
          }
        case _ =>
          SparkSubmit.printErrorAndExit(
            s"Cannot load main class from JAR $primaryResource with URI $uriScheme. " +
            "Please specify a class through --class.")
      }
    }

    // Global defaults. These should be keep to minimum to avoid confusing behavior.
    master = Option(master).getOrElse("local[*]")

    // In YARN mode, app name can be set via SPARK_YARN_APP_NAME (see SPARK-5222)
    if (master.startsWith("yarn")) {
      name = Option(name).orElse(env.get("SPARK_YARN_APP_NAME")).orNull
    }

    // Set name from main class if not given
    name = Option(name).orElse(Option(mainClass)).orNull
    if (name == null && primaryResource != null) {
      name = Utils.stripDirectory(primaryResource)
    }

    // Action should be SUBMIT unless otherwise specified
    action = Option(action).getOrElse(SUBMIT)
  }

validateArguments() 执行参数验证--确保必要的字段存在,确保参数值符合正常值

  private def validateArguments(): Unit = {
    action match {
      case SUBMIT => validateSubmitArguments()
      case KILL => validateKillArguments()
      case REQUEST_STATUS => validateStatusRequestArguments()
    }
  }

其中validateSubmitArguments()方法的验证逻辑

  private def validateSubmitArguments(): Unit = {
    if (args.length == 0) {
      printUsageAndExit(-1)
    }
    if (primaryResource == null) {
      SparkSubmit.printErrorAndExit("Must specify a primary resource (JAR or Python or R file)")
    }
    if (mainClass == null && SparkSubmit.isUserJar(primaryResource)) {
      SparkSubmit.printErrorAndExit("No main class set in JAR; please specify one with --class")
    }
    if (driverMemory != null
        && Try(JavaUtils.byteStringAsBytes(driverMemory)).getOrElse(-1L) <= 0) {
      SparkSubmit.printErrorAndExit("Driver Memory must be a positive number")
    }
    if (executorMemory != null
        && Try(JavaUtils.byteStringAsBytes(executorMemory)).getOrElse(-1L) <= 0) {
      SparkSubmit.printErrorAndExit("Executor Memory cores must be a positive number")
    }
    if (executorCores != null && Try(executorCores.toInt).getOrElse(-1) <= 0) {
      SparkSubmit.printErrorAndExit("Executor cores must be a positive number")
    }
    if (totalExecutorCores != null && Try(totalExecutorCores.toInt).getOrElse(-1) <= 0) {
      SparkSubmit.printErrorAndExit("Total executor cores must be a positive number")
    }
    if (numExecutors != null && Try(numExecutors.toInt).getOrElse(-1) <= 0) {
      SparkSubmit.printErrorAndExit("Number of executors must be a positive number")
    }
    if (pyFiles != null && !isPython) {
      SparkSubmit.printErrorAndExit("--py-files given but primary resource is not a Python script")
    }

    if (master.startsWith("yarn")) {
      val hasHadoopEnv = env.contains("HADOOP_CONF_DIR") || env.contains("YARN_CONF_DIR")
      if (!hasHadoopEnv && !Utils.isTesting) {
        throw new Exception(s"When running with master '$master' " +
          "either HADOOP_CONF_DIR or YARN_CONF_DIR must be set in the environment.")
      }
    }

    if (proxyUser != null && principal != null) {
      SparkSubmit.printErrorAndExit("Only one of --proxy-user or --principal can be provided.")
    }
  }
validateSubmitArguments方法

 

转载于:https://www.cnblogs.com/dtmobile-ksw/p/11561333.html

你可能感兴趣的:(spark-submit的参数传递源码分析)