- conda:一个当下最流行的Python虚拟环境工具
Wang_AI
点击上方“AI派”,选择“设为星标”最新分享,第一时间送达!作者:LeonWang,现为中科院特别研究助理(博士后),在AI、数据科学和科学计算等方面相关的工程实践上积累了丰富的经验。编辑:王老湿前面的文章中,为大家介绍过Python下的虚拟环境和包管理。在实际中,更为流行的是用Conda来管理Python环境。今天这篇文章就为大家介绍这方面的相关内容。Conda环境Conda简介Conda是目前
- 深入解析深度学习中的过拟合与欠拟合诊断、解决与工程实践
古月居GYH
深度学习人工智能
一、引言:模型泛化能力的核心挑战在深度学习模型开发中,欠拟合与过拟合是影响泛化能力的两个核心矛盾。据GoogleBrain研究统计,工业级深度学习项目中有63%的失败案例与这两个问题直接相关。本文将从基础概念到工程实践,系统解析其本质特征、诊断方法及解决方案,并辅以可复现的代码案例。二、核心概念与通熟易懂解释简单而言,欠拟合是指模型不能在训练集上获得足够低的误差。换句换说,就是模型复杂度低,模型在
- 并查集:从连通性检测到动态合并的算法艺术
六七_Shmily
数据结构与算法分析算法
并查集:从连通性检测到动态合并的算法艺术(C++实现)一、并查集:算法世界的隐形支柱在算法竞赛和工程实践中,并查集(DisjointSetUnion,DSU)是解决动态连通性问题的终极武器。它能在近乎常数时间内完成集合的合并与查询操作,广泛应用于社交网络、图像处理、编译器优化等领域。本文将深入剖析并查集的核心原理,并通过实战案例揭示其精妙之处。二、并查集的三重核心1.数据结构设计classDSU{
- 知识蒸馏:从软标签压缩到推理能力迁移的工程实践(基于教师-学生模型的高效压缩技术与DeepSeek合成数据创新)
AI仙人掌
人工智能AI人工智能深度学习语言模型机器学习
知识蒸馏通过迁移教师模型(复杂)的知识到学生模型(轻量),实现模型压缩与性能平衡。核心在于利用教师模型的软标签(概率分布)替代独热编码标签,学生模型不仅学习到教师模型输出数据的类别信息,还能够捕捉到类别之间的相似性和关系,从而提升其泛化能力核心概念知识蒸馏的核心目标是实现从教师模型到学生模型的知识迁移。在实际应用中,无论是大规模语言模型(LLMs)还是其他类型的神经网络模型,都会通过softmax
- KNN算法性能优化技巧与实战案例
可问 可问春风
算法性能优化
KNN算法性能优化技巧与实战案例K最近邻(KNN)在分类和回归任务中表现稳健,但其计算复杂度高、内存消耗大成为IT项目中的主要瓶颈。以下从算法优化、数据结构、工程实践三方面深入解析性能提升策略,并附典型应用案例。一、核心性能瓶颈维度挑战描述计算复杂度单次预测需计算全部训练样本距离,时间复杂度为(n=样本数,d=特征维度)内存占用需全量存储训练数据,大规模数据集难以加载高维灾难高维数据中距离计算失去
- 大语言模型原理与工程实践:大语言模型强化对齐
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:大语言模型强化对齐作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的迅猛发展,大语言模型(LargeLanguageModels,LLMs)如GPT-3、LaMDA等,在自然语言处理(NLP)领域取得了显著的突破。这些模型在问答、翻译、文本生成等方面展现出惊人的能力,但同时也引发了
- R+VIC模型融合实践技术应用及未来气候变化模型预测
科研的力量
水文地质土壤水文模型VIC模型
在气候变化问题日益严重的今天,水文模型在防洪规划,未来预测等方面发挥着不可替代的重要作用。目前,无论是工程实践或是科学研究中都存在很多著名的水文模型如SWAT/HSPF/HEC-HMS等。虽然,这些软件有各自的优点;但是,由于适用的尺度主要的是中小流域,所以在预测气候变化对水文过程影响等方面都有所不足。VIC模型是一个大尺度的半分布式水文模型,其设计之初就是为了模拟大流域的水文过程;它能够计算陆地
- R+VIC 模型融合实践技术应用及未来气候变化模型预测
weixin_贾
水文模型集合水文水资源防洪评价风险评估滑坡泥石流数学建模经验分享
目前,无论是工程实践或是科学研究中都存在很多著名的水文模型如SWAT/HSPF/HEC-HMS等。虽然,这些软件有各自的优点;但是,由于适用的尺度主要的是中小流域,所以在预测气候变化对水文过程影响等方面都有所不足。VIC模型是一个大尺度的半分布式水文模型,其设计之初就是为了模拟大流域的水文过程;它能够计算陆地-大气的能量通量,考虑土壤性质和土地利用的影响,自带有简化的湖泊/湿地模块,也能够将植被状
- 面试基础--分布式一致性算法深度解析
WeiLai1112
后端面试分布式算法java后端架构springboot
分布式一致性算法深度解析:RaftvsPaxos原理、实践与源码实现引言在分布式系统设计中,一致性算法是确保多节点数据同步和系统高可用的核心技术。Raft和Paxos作为两种最经典的分布式一致性算法,支撑了Etcd、ZooKeeper、TiDB等众多核心基础设施。本文将从算法原理、工程实践、源码实现三个维度对比Raft与Paxos,结合大厂真实案例,为分布式系统设计提供选型与实现指南。1.分布式一
- 嵌入式行业全景透视:前景、挑战与从业者发展路径
九溪弥烟、
技术杂谈嵌入式硬件
ARM架构各版本内核处理器总结模拟电子与数字电子:区别、联系与工程实践的侧重点为什么晶振被称为芯片的心脏?(全网最准确解释)一、行业前景:技术融合与市场扩张的双重驱动1.应用场景的泛在化渗透嵌入式系统已从传统工业控制、消费电子扩展到智能汽车、智慧医疗、边缘计算等新兴领域。例如,智能家居通过语音识别与传感器联动实现设备协同,工业4.0中嵌入式系统支撑自动化产线的实时控制与数据采集。据预测,2028年
- DeepSeek驱动的敏捷开发新范式:追逐太阳的鱼缸窗口效应——透明化开发与动态优化的生态重构
天街小雨润如苏同学
敏捷流程重构
引言在数字化浪潮的冲击下,软件系统的复杂性已远超传统管理方法的承载极限。"鱼缸窗口"隐喻所指向的完全透明、动态可视的开发环境,与"追逐太阳"所象征的持续价值追寻,共同勾勒出敏捷开发的新边疆。DeepSeek作为认知增强型人工智能,通过构建光速反馈的信息生态与自适应优化机制,正在将这种隐喻转化为工程实践。本文揭示该技术如何重塑敏捷开发的底层逻辑,创造开发者、系统与环境三者共生的新型态。一、技术架构的
- 大语言模型原理与工程实践:大语言模型推理工程推理加速:算子优化
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍近年来,大语言模型(LargeLanguageModel,LLM)在自然语言处理(NLP)领域取得了显著的进展。其中,推理(Inference)过程是大语言模型的核心环节之一。然而,随着模型规模的不断扩大,推理过程中的计算复杂度和延时也逐渐成为制约模型应用的重要因素。因此,如何实现大语言模型推理工程的推理加速,成为研究者和工程师迫切需要解决的问题。2.核心概念与联系在本文中,我们将深入
- 北大版,86页DeepSeek黑科技手册!比清华版更炸裂(免费下载)
2501_90850230
素材资源人工智能DeepSeek科技人工智能
北大最新的《DeepSeek提示词工程和落地场景》!这份文档刚在学术圈炸锅,作为国内首个系统性拆解推理大模型(DeepSeek-R1)落地方案的公开资料,其价值不仅在于揭示了一款国产模型的工程实践,更折射出大模型技术从实验室走向产业化的关键路径。手册下载:https://pan.quark.cn/s/881640172703DeepSeek全家桶北大版和清华版到底啥区别?技术定位:一个像社交达人,
- MATLAB 控制系统设计与仿真 - 13
东雁西飞
MATLAB控制系统设计与仿真matlab机器人ai自动驾驶人工智能
根轨迹分析根轨迹方法是一种图解法,他是古典控制理论中对系统进行分析和综合的基本方法之一。由于根轨迹图直观地描述了系统特征方程的根(线性系统的闭环极点)在s平面上的分布,因此用根轨迹法分析自动控制系统十分方便,在工程实践中也获得了广泛的应用。根轨迹反映了对于系统某一参数改变时,对系统的影响,从而较好的解决了高阶系统控制过程性能分析与计算。可以很直观的看出增加开环零极点对系统闭环特性的影响,可以通过增
- C#中使用NModbus4
工控-搬运工
上位机c#开发语言
以下是关于在C#中使用NModbus4库进行Modbus通信的完整技术指南,包含代码示例和工程实践:一、开发环境搭建安装NModbus4库通过NuGet安装Install-PackageNModbus4基础UI布局设计二、ModbusRTU主站实现串口初始化与连接privateSerialPort_serialPort;privateIModbusSerialMaster_master;priva
- 如何学习训练大模型——100条建议(附详细说明)_如何训练自己的大模型_大模型如何训练
大耳朵爱学习
人工智能语言模型产品经理大模型AI大模型
摘要:通过深入了解本文中的这些细节,并在实际项目中应用相关知识,将能够更好地理解和利用大模型的潜力,不仅在学术研究中,也在工程实践中。通过不断探索新方法、参与项目和保持热情,并将其应用于各种领域,从自然语言处理到计算机视觉和自动驾驶。通过不断学习、实践和探索,可以不断提升自己在深度学习领域的技能和洞察力,同时也能为社会和行业带来创新和改进。从小规模的项目和模型开始,逐渐迭代和扩展到更大的模型,逐步
- 大语言模型原理与工程实践:手把手教你训练 7B 大语言模型 自动化训练框架
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:手把手教你训练7B大语言模型自动化训练框架关键词:大语言模型、7B模型、自动化训练、深度学习、神经网络、自然语言处理、分布式计算文章目录大语言模型原理与工程实践:手把手教你训练7B大语言模型自动化训练框架1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4
- Windows逆向工程入门之MASM整数存储机制
0xCC说逆向
windows汇编逆向安全C
公开视频->链接点击跳转公开课程博客首页->链接点击跳转博客主页目录一、基础数据类型的存储模型二、内存布局的逆向工程实践一、基础数据类型的存储模型1.字节级存储规则无符号BYTE:dbvar4BYTE0FFh;存储值:0xFF(二进制补码,十进制255)内存布局:单字节直接存储逆向特征:取值范围0x00-0xFF,常用于标志位或ASCII字符有符号SBYTE:dbvar5SBYTE80h;存储值:
- go zap 高性能日志
daemon365
gojava前端数据库
摘要日志在整个工程实践中的重要性不言而喻,在选择日志组件的时候也有多方面的考量。详细、正确和及时的反馈是必不可少的,但是整个性能表现是否也是必要考虑的点呢?在长期的实践中发现有的日志组件对于计算资源的消耗十分巨大,这将导致整个服务成本的居高不下。此文从设计原理深度分析了zap的设计与实现上的权衡,也希望整个的选择、考量的过程能给其他的技术团队在开发高性能的Go组件时带来一定的借鉴意义。前言日志作为
- 大语言模型原理与工程实践:Transformer 大语言模型预训练
AI天才研究院
计算ChatGPTtransformer
大语言模型原理与工程实践:Transformer大语言模型预训练关键词:大语言模型、预训练、Transformer、自监督学习、计算资源、数据处理文章目录大语言模型原理与工程实践:Transformer大语言模型预训练1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系2.1大语言模型(LargeLanguageModels,LLMs)2.2预训练(Pre-tr
- YashanDB数据库融合架构设计与实践
虎嗅科技
数据库
4月12日,第十三届数据技术嘉年华(DTC2024)在北京成功召开,YashanDB存储引擎负责人郭藏龙受邀参与,并在大会上分享了题为《数据库融合架构设计与实践》的演讲。以下是演讲实录:今天我将围绕“数据库一体化”这个比较热门的话题,结合YashanDB在理论创新、技术架构以及工程实践方面的探索经验,从业务、技术、产品三个角度深入聊聊“数据库一体化”,也欢迎大家交流探讨。分享将从以下几个部分展开:
- DTC演讲实录 聊聊数据库一体化——YashanDB数据库融合架构设计与实践
科技热点榜
数据库
4月12日,第十三届数据技术嘉年华(DTC2024)在北京成功召开,YashanDB存储引擎负责人郭藏龙受邀参与,并在大会上分享了题为《数据库融合架构设计与实践》的演讲。以下是演讲实录:今天我将围绕“数据库一体化”这个比较热门的话题,结合YashanDB在理论创新、技术架构以及工程实践方面的探索经验,从业务、技术、产品三个角度深入聊聊“数据库一体化”,也欢迎大家交流探讨。分享将从以下几个部分展开:
- 边缘计算在工程中的应用与实践
ITPUB-微风
边缘计算人工智能
随着物联网和智能制造的快速发展,边缘计算作为一种新兴的计算模式,正逐渐成为工程领域的重要技术。本文将探讨边缘计算的概念、优势、应用场景,以及Kubeedge边缘计算平台在工程实践中的应用。一、边缘计算的概念边缘计算是一种分布式计算架构,它将计算和存储资源部署在网络边缘,靠近数据源。与云计算相对应,边缘计算能够提供更快的响应速度、更低的带宽消耗和更高的系统容错性。二、边缘计算的优势充分利用设备计算资
- 市场调研数据中台架构:Python 爬虫集群突破反爬限制的工程实践
西攻城狮北
架构python爬虫实战案例
引言在当今数据驱动的商业环境中,市场调研数据对于企业的决策至关重要。为了构建一个高效的数据中台架构,我们需要从多个数据源采集数据,而网络爬虫是获取公开数据的重要手段之一。然而,许多网站为了保护数据,设置了各种反爬机制,如IP封禁、验证码、动态内容加载等。本文将详细介绍如何使用Python爬虫集群突破这些反爬限制,并结合实际工程实践,提供完整的代码示例和优化建议。一、项目背景与需求分析1.市场调研数
- 分布式数据库解析
qcidyu
文章归档数据分片高可用架构云数据库共识算法全球一致性分布式事务CAP定理
title:分布式数据库解析date:2025/2/20updated:2025/2/20author:cmdragonexcerpt:通过金融交易、社交平台、物联网等9大真实场景,结合GoogleSpanner跨洲事务、DynamoDB毫秒级扩展等38个生产级案例,揭示分布式数据库的核心原理与工程实践。内容涵盖CAP定理的动态权衡策略、Paxos/Raft协议的工程实现差异、TrueTime时钟
- RTOS 特性及其思考
TianYaKe-天涯客
arm开发
前言最近在研究FreeRTOS,觉得RTOS有些特性还是比较有趣的,有一些想法,问了一下AI,简单探讨一下。有纰漏请指出,转载请说明。学习交流请发邮件
[email protected]百问网《FreeRTOS入门与工程实践-基于STM32F103》教程-基于DShanMCU-103(STM32F103)|百问网为什么有些项目,裸机编程不再适用,需要RTOS一、任务调度与并发处理裸机编程:在裸机环境
- C++循环结构:原理剖析与工程实践优化策略
溟海.
c++开发语言
以下是一篇关于C++循环结构的原创技术论文框架及内容示例,包含理论解析与工程实践结合的分析C++循环结构:原理剖析与工程实践优化策略**摘要**本文系统探讨C++语言中循环结构的实现机制、应用场景及优化方法。通过分析for、while、do-while三种基本循环结构在编译器层面的实现差异,结合现代C++11/17标准新增特性,提出面向性能优化和代码可维护性的工程实践方案。实验表明,合理选择循环结
- 深入解析C++命名空间:从基础到高级应用
Rhzkp
c++
目录一、命名空间的必要性(WhyNamespaces?)二、命名空间的核心语法(CoreSyntax)2.1基础定义2.2嵌套命名空间2.3全局命名空间三、命名空间的使用策略(UsageStrategies)3.1限定名称访问3.2using声明vsusing指令3.3命名空间别名3.4匿名命名空间四、工程实践中的应用(PracticalApplications)4.1模块化代码组织4.2第三方库
- C++栈内存管理:从原理到高性能编程实践
溟海.
c++c++开发语言
以下是一篇关于C++栈机制的原创技术论文框架及内容,结合语言规范、编译器实现与工程实践,包含创新性分析和实验验证:---**C++栈内存管理:从原理到高性能编程实践****摘要**本文深入剖析C++栈内存的分配机制、生命周期管理及优化策略。通过反汇编分析GCC/Clang编译器实现,验证栈帧结构与函数调用约定,提出基于现代C++特性的栈使用优化方案。实验证明,合理控制栈空间可降低30%内存访问延迟
- 深入探索现代CSS:从基础到未来趋势
斯~内克
前端css前端
引言:CSS的进化之路CSS(层叠样式表)自1996年诞生以来,已从简单的样式描述语言发展为构建现代Web体验的核心技术。截至2023年,超过98%的网站使用CSS3技术,其发展历程见证了Web从静态文档到富交互应用的蜕变。本文将系统解析CSS的核心机制、现代工程实践与未来发展方向,为开发者提供全景视角。一、CSS核心机制解析1.1层叠与继承原理/*层叠示例*/.button{color:blue
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文