最长非降子序列LIS(longest increasing subsequence)

转载来自:

http://hawstein.com/posts/dp-novice-to-advanced.html

http://www.felix021.com/blog/read.php?1587


问题:

一个序列有N个数:A[1],A[2],…,A[N],求出最长非降子序列的长度。 (讲DP基本都会讲到的一个问题LIS:longest increasing subsequence)


DP解法:

正如上面我们讲的,面对这样一个问题,我们首先要定义一个“状态”来代表它的子问题, 并且找到它的解。注意,大部分情况下,某个状态只与它前面出现的状态有关, 而独立于后面的状态。

让我们沿用“入门”一节里那道简单题的思路来一步步找到“状态”和“状态转移方程”。 假如我们考虑求A[1],A[2],…,A[i]的最长非降子序列的长度,其中i

为了方便理解我们是如何找到状态转移方程的,我先把下面的例子提到前面来讲。 如果我们要求的这N个数的序列是:

5,3,4,8,6,7

根据上面找到的状态,我们可以得到:(下文的最长非降子序列都用LIS表示)

  • 前1个数的LIS长度d(1)=1(序列:5)
  • 前2个数的LIS长度d(2)=1(序列:3;3前面没有比3小的)
  • 前3个数的LIS长度d(3)=2(序列:3,4;4前面有个比它小的3,所以d(3)=d(2)+1)
  • 前4个数的LIS长度d(4)=3(序列:3,4,8;8前面比它小的有3个数,所以 d(4)=max{d(1),d(2),d(3)}+1=3)

OK,分析到这,我觉得状态转移方程已经很明显了,如果我们已经求出了d(1)到d(i-1), 那么d(i)可以用下面的状态转移方程得到:

d(i) = max{1, d(j)+1},其中j

用大白话解释就是,想要求d(i),就把i前面的各个子序列中, 最后一个数不大于A[i]的序列长度加1,然后取出最大的长度即为d(i)。 当然了,有可能i前面的各个子序列中最后一个数都大于A[i],那么d(i)=1, 即它自身成为一个长度为1的子序列。

分析完了,上图:(第二列表示前i个数中LIS的长度, 第三列表示,LIS中到达当前这个数的上一个数的下标,根据这个可以求出LIS序列)

Talk is cheap, show me the code:

#include 
using namespace std;

int lis(int A[], int n){
    int *d = new int[n];
    int len = 1;
    for(int i=0; id[i])
                d[i] = d[j] + 1;
        if(d[i]>len) len = d[i];
    }
    delete[] d;
    return len;
}
int main(){
    int A[] = {
        5, 3, 4, 8, 6, 7
    };
    cout<

该算法的时间复杂度是O(n 2  ),并不是最优的解法。 还有一种很巧妙的算法可以将时间复杂度降到O(nlogn),网上已经有各种文章介绍它, 这里就不再赘述。传送门:  LIS的O(nlogn)解法 。 此题还可以用“排序+LCS”来解,感兴趣的话可自行Google。


非DP解法: LIS的O(nlogn)解法

假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了
首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1

然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1

接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2

再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2

继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。

第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3

第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了

第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。

最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。

于是我们知道了LIS的长度为5。

!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。

然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!

代码如下:

int LIS(int d[], int n){
    int *B = new int[n];
    int left, right, mid, len = 1;
    B[0] = d[1]; //为了和上面的一致,我们从1开始计数吧:)
    for(i = 2; i <= n; ++i){
        left = 0, right = len;
        while(left <= right){
            mid = (left + right) / 2;
            if(B[mid] < d[i]) left = mid + 1; //二分查找d[i]的插入位置
            else right = mid - 1;
        }
        B[left] = d[i]; //插入
        if(left > len) len++; //d[i]比现有的所有数字都大,所以left 才会大于 len。
    }
    delete[] B;
    return len;
}



你可能感兴趣的:(数据结构与算法)