hive中的lateral view 与 explode函数的使用 行转列

hive中的lateral view 与 explode函数的使用

explode与lateral view在关系型数据库中本身是不该出现的,因为他的出现本身就是在操作不满足第一范式的数据(每个属性都不可再分),
本身已经违背了数据库的设计原理(不论是业务系统还是数据仓库系统),不过大数据技术普及后,很多类似pv,uv的数据,在业务系统中是存贮在非关系型数据库中,
用json存储的概率比较大,直接导入hive为基础的数仓系统中,就需要经过ETL过程解析这类数据,explode与lateral view在这种场景下大显身手。


explode作用是处理map结构的字段,使用案例如下(hive自带map,struct,array字段类型,但是需要先定义好泛型,所以在此案例不使用):
建表语句:
drop table explode_lateral_view;
create table explode_lateral_view
(`area` string,
`goods_id` string,
`sale_info` string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
STORED AS textfile;


导入数据:
a:shandong,b:beijing,c:hebei|1,2,3,4,5,6,7,8,9|[{"source":"7fresh","monthSales":4900,"userCount":1900,"score":"9.9"},{"source":"jd","monthSales":2090,"userCount":78981,"score":"9.8"},{"source":"jdmart","monthSales":6987,"userCount":1600,"score":"9.0"}]
表内数据如下

explode的使用:
我们只拆解array字段,语句为select explode(split(goods_id,',')) as goods_id from explode_lateral_view;
结果如下

拆解map字段,语句为select explode(split(area,',')) as area from explode_lateral_view;
我们会得到如下结果:

拆解json字段

这个时候要配合一下get_json_object

我们想获取所有的monthSales,第一步我们先把这个字段拆成list并且拆成行展示
select explode(split(regexp_replace(regexp_replace(sale_info,'\\[\\{',''),'}]',''),'},\\{')) as  sale_info from explode_lateral_view;

然后我们想用get_json_object来获取key为monthSales的数据:
select get_json_object(explode(split(regexp_replace(regexp_replace(sale_info,'\\[\\{',''),'}]',''),'},\\{')),'$.monthSales') as  sale_info from explode_lateral_view;
然后挂了FAILED: SemanticException [Error 10081]: UDTF's are not supported outside the SELECT clause, nor nested in expressions
UDTF explode不能写在别的函数内
如果你这么写,想查两个字段,select explode(split(area,',')) as area,good_id from explode_lateral_view;
会报错FAILED: SemanticException 1:40 Only a single expression in the SELECT clause is supported with UDTF's. Error encountered near token 'good_id'
使用UDTF的时候,只支持一个字段,这时候就需要LATERAL VIEW出场了

LATERAL VIEW的使用:
侧视图的意义是配合explode(或者其他的UDTF),一个语句生成把单行数据拆解成多行后的数据结果集
select goods_id2,sale_info from explode_lateral_view LATERAL VIEW explode(split(goods_id,','))goods as goods_id2;

其中LATERAL VIEW explode(split(goods_id,','))goods相当于一个虚拟表,与原表explode_lateral_view笛卡尔积关联
也可以多重使用
select goods_id2,sale_info,area2
from explode_lateral_view 
LATERAL VIEW explode(split(goods_id,','))goods as goods_id2 
LATERAL VIEW explode(split(area,','))area as area2;
也是三个表笛卡尔积的结果

现在我们解决一下上面的问题,从sale_info字段中找出所有的monthSales并且行展示
select get_json_object(concat('{',sale_info_r,'}'),'$.monthSales') as monthSales from explode_lateral_view 
LATERAL VIEW explode(split(regexp_replace(regexp_replace(sale_info,'\\[\\{',''),'}]',''),'},\\{'))sale_info as sale_info_r;


最终,我们可以通过下面的句子,把这个json格式的一行数据,完全转换成二维表的方式展现

select get_json_object(concat('{',sale_info_1,'}'),'$.source') as source,
     get_json_object(concat('{',sale_info_1,'}'),'$.monthSales') as monthSales,
     get_json_object(concat('{',sale_info_1,'}'),'$.userCount') as monthSales,
     get_json_object(concat('{',sale_info_1,'}'),'$.score') as monthSales
  from explode_lateral_view 

LATERAL VIEW explode(split(regexp_replace(regexp_replace(sale_info,'\\[\\{',''),'}]',''),'},\\{'))sale_info as sale_info_1;

 

1). Lateral View语法

 

lateralView: LATERAL VIEW udtf(expression) tableAlias AS columnAlias (',' columnAlias)* fromClause: FROM baseTable (lateralView)*

2). Lateral View用于UDTF(user-defined table generating functions)中将行转成列,例如explode().

3). 目前Lateral View不支持有上而下的优化。如果使用Where子句,查询可能将不被编译。解决方法见:

此时,在查询之前执行et hive.optimize.ppd=false;

4).例子

pageAds。它有两个列:pageid,adid_list:

 

string pageid Array adid_list
"front_page" [1, 2, 3]
"contact_page" [3, 4, 5]

SELECT pageid, adid FROM pageAds LATERAL VIEW explode(adid_list) adTable AS adid;

将输出如下结果:

string pageid int adid
"front_page" 1
"front_page" 2
"front_page" 3
"contact_page" 3
"contact_page" 4
"contact_page"  

count/group可以被使用:

SELECT adid, count(1) FROM pageAds LATERAL VIEW explode(adid_list) adTable AS adid GROUP BY adid;

结果如下:

 

int adid count(1)
1 1
2 1
3 2
4 1
5 1

5). 多个Lateral View

例如下面的HQL:

SELECT * FROM exampleTable LATERAL VIEW explode(col1) myTable1 AS myCol1 LATERAL VIEW explode(myCol1) myTable2 AS myCol2;

假设使用的base表如下:

 

Array col1 Array col2
[1, 2] [a", "b", "c"]
[3, 4] [d", "e", "f"]

HQL:

SELECT myCol1, col2 FROM baseTable LATERAL VIEW explode(col1) myTable1 AS myCol1;

 

将产生如下结果:

 

int mycol1 Array col2
1 [a", "b", "c"]
2 [a", "b", "c"]
3 [d", "e", "f"]
4 [d", "e", "f"]

多个Lateral View的HQL:

 
  1. SELECT myCol1, myCol2 FROM baseTable LATERAL VIEW explode(col1) myTable1 AS myCol1

  2. LATERAL VIEW explode(col2) myTable2 AS myCol2;

 

将产生如下结果:

int myCol1 string myCol2
1 "a"
1 "b"
1 "c"
2 "a"
2 "b"
2 "c"
3 "d"
3 "e"
3 "f"
4 "d"
4 "e"
4 "f"

你可能感兴趣的:(hive)