本博客来源于CSDN:http://blog.csdn.net/niuwei22007/article/details/49703719
本博客源代码下载地址:CSDN免费下载、GitHub下载地址 均带有详细注释和测试数据
今天学习了《机器学习实战》这本书介绍的第一个机器学习算法—k近邻算法。书中介绍它对于分类非常有效,比如书中的例子是对电影的题材进行分类。
算法原理是什么?允许我不严谨的说一下:首先有一堆有标签的样本,比如有一堆各种各样的鸟(样本集),我知道各种鸟的不同外貌(特征),比如羽毛颜色、有无脚蹼、身体重量、身体长度以及最重要的它属于哪一种鸟(类别/标签);然后给我一只不是这堆鸟中的一只鸟(测试样本),让我观察了它的羽毛颜色等后,让我说出它属于哪一种鸟?我的做法是:遍历之前的一堆鸟,分别比较每一只鸟的羽毛颜色、身体重量等特征与给定鸟的相应特征,并给出这两只鸟的相似度。最终,从那一堆鸟中找出相似度最大的前k只,然后统计这k只鸟的分类,最后把分类数量最多的那只鸟的类别作为给定鸟的类别。虽然结果不一定准确,但是是有理论支持的,那就是概率论,哈哈。
下面来看一下书上对这个算法的原理介绍:存在一个训练样本集,并且每个样本都存在标签(有监督学习)。输入没有标签的新样本数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取出与样本集中特征最相似的数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,而且k通常不大于20。最后选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
没接触过的同学应该能懂了吧。书中的举例是对电影的题材进行分类:爱情片or动作片。依据电影中打斗镜头和接吻镜头的数量。下面来看一下如何用kNN来解决这个问题。
要解决给定一部电影,判断其属于哪一种电影这个问题,就需要知道这个未知电影存在多少个打斗镜头和接吻镜头,如上图所示,问号位置所代表的两种镜头次数分别是多少?
下面我们来看一下图中电影的特征值,如下表:
相信看过数据以后,即使不知道未知电影(?)属于哪一种类型,但是可以通过某个计算方法计算出来。
下面贴一下书上总结的k近邻算法的一般流程:
#coding=UTF8
from numpy import *
import operator
def createDataSet():
"""
函数作用:构建一组训练数据(训练样本),共4个样本
同时给出了这4个样本的标签,及labels
"""
group = array([
[1.0, 1.1],
[1.0, 1.0],
[0. , 0. ],
[0. , 0.1]
])
labels = ['A', 'A', 'B', 'B']
return group, labels
def classify0(inX, dataset, labels, k):
"""
inX 是输入的测试样本,是一个[x, y]样式的
dataset 是训练样本集
labels 是训练样本标签
k 是top k最相近的
"""
# shape返回矩阵的[行数,列数],
# 那么shape[0]获取数据集的行数,
# 行数就是样本的数量
dataSetSize = dataset.shape[0]
"""
下面的求距离过程就是按照欧氏距离的公式计算的。
即 根号(x^2+y^2)
"""
# tile属于numpy模块下边的函数
# tile(A, reps)返回一个shape=reps的矩阵,矩阵的每个元素是A
# 比如 A=[0,1,2] 那么,tile(A, 2)= [0, 1, 2, 0, 1, 2]
# tile(A,(2,2)) = [[0, 1, 2, 0, 1, 2],
# [0, 1, 2, 0, 1, 2]]
# tile(A,(2,1,2)) = [[[0, 1, 2, 0, 1, 2]],
# [[0, 1, 2, 0, 1, 2]]]
# 上边那个结果的分开理解就是:
# 最外层是2个元素,即最外边的[]中包含2个元素,类似于[C,D],而此处的C=D,因为是复制出来的
# 然后C包含1个元素,即C=[E],同理D=[E]
# 最后E包含2个元素,即E=[F,G],此处F=G,因为是复制出来的
# F就是A了,基础元素
# 综合起来就是(2,1,2)= [C, C] = [[E], [E]] = [[[F, F]], [[F, F]]] = [[[A, A]], [[A, A]]]
# 这个地方就是为了把输入的测试样本扩展为和dataset的shape一样,然后就可以直接做矩阵减法了。
# 比如,dataset有4个样本,就是4*2的矩阵,输入测试样本肯定是一个了,就是1*2,为了计算输入样本与训练样本的距离
# 那么,需要对这个数据进行作差。这是一次比较,因为训练样本有n个,那么就要进行n次比较;
# 为了方便计算,把输入样本复制n次,然后直接与训练样本作矩阵差运算,就可以一次性比较了n个样本。
# 比如inX = [0,1],dataset就用函数返回的结果,那么
# tile(inX, (4,1))= [[ 0.0, 1.0],
# [ 0.0, 1.0],
# [ 0.0, 1.0],
# [ 0.0, 1.0]]
# 作差之后
# diffMat = [[-1.0,-0.1],
# [-1.0, 0.0],
# [ 0.0, 1.0],
# [ 0.0, 0.9]]
diffMat = tile(inX, (dataSetSize, 1)) - dataset
# diffMat就是输入样本与每个训练样本的差值,然后对其每个x和y的差值进行平方运算。
# diffMat是一个矩阵,矩阵**2表示对矩阵中的每个元素进行**2操作,即平方。
# sqDiffMat = [[1.0, 0.01],
# [1.0, 0.0 ],
# [0.0, 1.0 ],
# [0.0, 0.81]]
sqDiffMat = diffMat ** 2
# axis=1表示按照横轴,sum表示累加,即按照行进行累加。
# sqDistance = [[1.01],
# [1.0 ],
# [1.0 ],
# [0.81]]
sqDistance = sqDiffMat.sum(axis=1)
# 对平方和进行开根号
distance = sqDistance ** 0.5
# 按照升序进行快速排序,返回的是原数组的下标。
# 比如,x = [30, 10, 20, 40]
# 升序排序后应该是[10,20,30,40],他们的原下标是[1,2,0,3]
# 那么,numpy.argsort(x) = [1, 2, 0, 3]
sortedDistIndicies = distance.argsort()
# 存放最终的分类结果及相应的结果投票数
classCount = {}
# 投票过程,就是统计前k个最近的样本所属类别包含的样本个数
for i in range(k):
# index = sortedDistIndicies[i]是第i个最相近的样本下标
# voteIlabel = labels[index]是样本index对应的分类结果('A' or 'B')
voteIlabel = labels[sortedDistIndicies[i]]
# classCount.get(voteIlabel, 0)返回voteIlabel的值,如果不存在,则返回0
# 然后将票数增1
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
# 把分类结果进行排序,然后返回得票数最多的分类结果
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
if __name__== "__main__":
# 导入数据
dataset, labels = createDataSet()
inX = [0.1, 0.1]
# 简单分类
className = classify0(inX, dataset, labels, 3)
print 'the class of test sample is %s' %className
#coding=UTF8
from numpy import *
import operator
from os import listdir
def classify0(inX, dataset, labels, k):
"""
inX 是输入的测试样本,是一个[x, y]样式的
dataset 是训练样本集
labels 是训练样本标签
k 是top k最相近的
"""
# shape返回矩阵的[行数,列数],
# 那么shape[0]获取数据集的行数,
# 行数就是样本的数量
dataSetSize = dataset.shape[0]
"""
下面的求距离过程就是按照欧氏距离的公式计算的。
即 根号(x^2+y^2)
"""
# tile属于numpy模块下边的函数
# tile(A, reps)返回一个shape=reps的矩阵,矩阵的每个元素是A
# 比如 A=[0,1,2] 那么,tile(A, 2)= [0, 1, 2, 0, 1, 2]
# tile(A,(2,2)) = [[0, 1, 2, 0, 1, 2],
# [0, 1, 2, 0, 1, 2]]
# tile(A,(2,1,2)) = [[[0, 1, 2, 0, 1, 2]],
# [[0, 1, 2, 0, 1, 2]]]
# 上边那个结果的分开理解就是:
# 最外层是2个元素,即最外边的[]中包含2个元素,类似于[C,D],而此处的C=D,因为是复制出来的
# 然后C包含1个元素,即C=[E],同理D=[E]
# 最后E包含2个元素,即E=[F,G],此处F=G,因为是复制出来的
# F就是A了,基础元素
# 综合起来就是(2,1,2)= [C, C] = [[E], [E]] = [[[F, F]], [[F, F]]] = [[[A, A]], [[A, A]]]
# 这个地方就是为了把输入的测试样本扩展为和dataset的shape一样,然后就可以直接做矩阵减法了。
# 比如,dataset有4个样本,就是4*2的矩阵,输入测试样本肯定是一个了,就是1*2,为了计算输入样本与训练样本的距离
# 那么,需要对这个数据进行作差。这是一次比较,因为训练样本有n个,那么就要进行n次比较;
# 为了方便计算,把输入样本复制n次,然后直接与训练样本作矩阵差运算,就可以一次性比较了n个样本。
# 比如inX = [0,1],dataset就用函数返回的结果,那么
# tile(inX, (4,1))= [[ 0.0, 1.0],
# [ 0.0, 1.0],
# [ 0.0, 1.0],
# [ 0.0, 1.0]]
# 作差之后
# diffMat = [[-1.0,-0.1],
# [-1.0, 0.0],
# [ 0.0, 1.0],
# [ 0.0, 0.9]]
diffMat = tile(inX, (dataSetSize, 1)) - dataset
# diffMat就是输入样本与每个训练样本的差值,然后对其每个x和y的差值进行平方运算。
# diffMat是一个矩阵,矩阵**2表示对矩阵中的每个元素进行**2操作,即平方。
# sqDiffMat = [[1.0, 0.01],
# [1.0, 0.0 ],
# [0.0, 1.0 ],
# [0.0, 0.81]]
sqDiffMat = diffMat ** 2
# axis=1表示按照横轴,sum表示累加,即按照行进行累加。
# sqDistance = [[1.01],
# [1.0 ],
# [1.0 ],
# [0.81]]
sqDistance = sqDiffMat.sum(axis=1)
# 对平方和进行开根号
distance = sqDistance ** 0.5
# 按照升序进行快速排序,返回的是原数组的下标。
# 比如,x = [30, 10, 20, 40]
# 升序排序后应该是[10,20,30,40],他们的原下标是[1,2,0,3]
# 那么,numpy.argsort(x) = [1, 2, 0, 3]
sortedDistIndicies = distance.argsort()
# 存放最终的分类结果及相应的结果投票数
classCount = {}
# 投票过程,就是统计前k个最近的样本所属类别包含的样本个数
for i in range(k):
# index = sortedDistIndicies[i]是第i个最相近的样本下标
# voteIlabel = labels[index]是样本index对应的分类结果('A' or 'B')
voteIlabel = labels[sortedDistIndicies[i]]
# classCount.get(voteIlabel, 0)返回voteIlabel的值,如果不存在,则返回0
# 然后将票数增1
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
# 把分类结果进行排序,然后返回得票数最多的分类结果
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def file2matrix(filename):
"""
从文件中读入训练数据,并存储为矩阵
"""
fr = open(filename)
numberOfLines = len(fr.readlines()) #获取 n=样本的行数
returnMat = zeros((numberOfLines,3)) #创建一个2维矩阵用于存放训练样本数据,一共有n行,每一行存放3个数据
classLabelVector = [] #创建一个1维数组用于存放训练样本标签。
fr = open(filename)
index = 0
for line in fr.readlines():
# 把回车符号给去掉
line = line.strip()
# 把每一行数据用\t分割
listFromLine = line.split('\t')
# 把分割好的数据放至数据集,其中index是该样本数据的下标,就是放到第几行
returnMat[index,:] = listFromLine[0:3]
# 把该样本对应的标签放至标签集,顺序与样本集对应。
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector
def autoNorm(dataSet):
"""
训练数据归一化
"""
# 获取数据集中每一列的最小数值
# 以createDataSet()中的数据为例,group.min(0)=[0,0]
minVals = dataSet.min(0)
# 获取数据集中每一列的最大数值
# group.max(0)=[1, 1.1]
maxVals = dataSet.max(0)
# 最大值与最小的差值
ranges = maxVals - minVals
# 创建一个与dataSet同shape的全0矩阵,用于存放归一化后的数据
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
# 把最小值扩充为与dataSet同shape,然后作差,具体tile请翻看 第三节 代码中的tile
normDataSet = dataSet - tile(minVals, (m,1))
# 把最大最小差值扩充为dataSet同shape,然后作商,是指对应元素进行除法运算,而不是矩阵除法。
# 矩阵除法在numpy中要用linalg.solve(A,B)
normDataSet = normDataSet/tile(ranges, (m,1))
return normDataSet, ranges, minVals
def datingClassTest():
# 将数据集中10%的数据留作测试用,其余的90%用于训练
hoRatio = 0.10
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #load data setfrom file
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print "the classifier came back with: %d, the real answer is: %d, result is :%s" % (classifierResult, datingLabels[i],classifierResult==datingLabels[i])
if (classifierResult != datingLabels[i]): errorCount += 1.0
print "the total error rate is: %f" % (errorCount/float(numTestVecs))
print errorCount
if __name__=="__main__"
datingClassTest()
改进一:数值归一化
第三节就是按照第二节中描述实现的算法。但是这只是最简单的分类,当遇到特征值相差很大的时候,分类效果就不好了。比如,原来的dataSet中有一个这样的样本:[1, 10000]。同时输入样本仍然为第三节中测试的[0.1, 0.1]。所以很明显,当求这两个样本之间的距离的时候就出问题,由于那个10000太大,对最终的结果影响最大,其他的0.1和1可以忽略不计了。因此就用到了数值归一化。如果还有不太清楚地,百度一下。详细实现看代码,有详细注释。
改进二:从文件中读入数据
要做一个稍微复杂一点的测试,就需要多准备点样本数据,而在第三节中,训练样本只有4个,而且是固定生成的。在新的算法里边加入了可以从文件中读取训练数据。代码有详细注释。
识别手写数字,需要先把手写数字图片转换为相应的01矩阵格式,这里提供已经经过转换的数据文件。trainingDigits是2000个训练样本,testDigits是900个测试样本。
#coding=UTF8
from numpy import *
import operator
from os import listdir
def classify0(inX, dataset, labels, k):
"""
inX 是输入的测试样本,是一个[x, y]样式的
dataset 是训练样本集
labels 是训练样本标签
k 是top k最相近的
"""
# shape返回矩阵的[行数,列数],
# 那么shape[0]获取数据集的行数,
# 行数就是样本的数量
dataSetSize = dataset.shape[0]
# tile属于numpy模块下边的函数
# tile(A, reps)返回一个shape=reps的矩阵,矩阵的每个元素是A
# 比如 A=[0,1,2] 那么,tile(A, 2)= [0, 1, 2, 0, 1, 2]
# tile(A,(2,2)) = [[0, 1, 2, 0, 1, 2],
# [0, 1, 2, 0, 1, 2]]
# tile(A,(2,1,2)) = [[[0, 1, 2, 0, 1, 2]],
# [[0, 1, 2, 0, 1, 2]]]
# 上边那个结果的分开理解就是:
# 最外层是2个元素,即最外边的[]中包含2个元素,类似于[C,D],而此处的C=D,因为是复制出来的
# 然后C包含1个元素,即C=[E],同理D=[E]
# 最后E包含2个元素,即E=[F,G],此处F=G,因为是复制出来的
# F就是A了,基础元素
# 综合起来就是(2,1,2)= [C, C] = [[E], [E]] = [[[F, F]], [[F, F]]] = [[[A, A]], [[A, A]]]
# 这个地方就是为了把输入的测试样本扩展为和dataset的shape一样,然后就可以直接做矩阵减法了。
# 比如,dataset有4个样本,就是4*2的矩阵,输入测试样本肯定是一个了,就是1*2,为了计算输入样本与训练样本的距离
# 那么,需要对这个数据进行作差。这是一次比较,因为训练样本有n个,那么就要进行n次比较;
# 为了方便计算,把输入样本复制n次,然后直接与训练样本作矩阵差运算,就可以一次性比较了n个样本。
# 比如inX = [0,1],dataset就用函数返回的结果,那么
# tile(inX, (4,1))= [[ 0.0, 1.0],
# [ 0.0, 1.0],
# [ 0.0, 1.0],
# [ 0.0, 1.0]]
# 作差之后
# diffMat = [[-1.0,-0.1],
# [-1.0, 0.0],
# [ 0.0, 1.0],
# [ 0.0, 0.9]]
diffMat = tile(inX, (dataSetSize, 1)) - dataset
# diffMat就是输入样本与每个训练样本的差值,然后对其每个x和y的差值进行平方运算。
# diffMat是一个矩阵,矩阵**2表示对矩阵中的每个元素进行**2操作,即平方。
# sqDiffMat = [[1.0, 0.01],
# [1.0, 0.0 ],
# [0.0, 1.0 ],
# [0.0, 0.81]]
sqDiffMat = diffMat ** 2
# axis=1表示按照横轴,sum表示累加,即按照行进行累加。
# sqDistance = [[1.01],
# [1.0 ],
# [1.0 ],
# [0.81]]
sqDistance = sqDiffMat.sum(axis=1)
# 对平方和进行开根号
distance = sqDistance ** 0.5
# 按照升序进行快速排序,返回的是原数组的下标。
# 比如,x = [30, 10, 20, 40]
# 升序排序后应该是[10,20,30,40],他们的原下标是[1,2,0,3]
# 那么,numpy.argsort(x) = [1, 2, 0, 3]
sortedDistIndicies = distance.argsort()
# 存放最终的分类结果及相应的结果投票数
classCount = {}
# 投票过程,就是统计前k个最近的样本所属类别包含的样本个数
for i in range(k):
# index = sortedDistIndicies[i]是第i个最相近的样本下标
# voteIlabel = labels[index]是样本index对应的分类结果('A' or 'B')
voteIlabel = labels[sortedDistIndicies[i]]
# classCount.get(voteIlabel, 0)返回voteIlabel的值,如果不存在,则返回0
# 然后将票数增1
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
# 把分类结果进行排序,然后返回得票数最多的分类结果
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def file2matrix(filename):
"""
从文件中读入训练数据,并存储为矩阵
"""
fr = open(filename)
numberOfLines = len(fr.readlines()) #获取 n=样本的行数
returnMat = zeros((numberOfLines,3)) #创建一个2维矩阵用于存放训练样本数据,一共有n行,每一行存放3个数据
classLabelVector = [] #创建一个1维数组用于存放训练样本标签。
fr = open(filename)
index = 0
for line in fr.readlines():
# 把回车符号给去掉
line = line.strip()
# 把每一行数据用\t分割
listFromLine = line.split('\t')
# 把分割好的数据放至数据集,其中index是该样本数据的下标,就是放到第几行
returnMat[index,:] = listFromLine[0:3]
# 把该样本对应的标签放至标签集,顺序与样本集对应。
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector
def autoNorm(dataSet):
"""
训练数据归一化
"""
# 获取数据集中每一列的最小数值
# 以createDataSet()中的数据为例,group.min(0)=[0,0]
minVals = dataSet.min(0)
# 获取数据集中每一列的最大数值
# group.max(0)=[1, 1.1]
maxVals = dataSet.max(0)
# 最大值与最小的差值
ranges = maxVals - minVals
# 创建一个与dataSet同shape的全0矩阵,用于存放归一化后的数据
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
# 把最小值扩充为与dataSet同shape,然后作差,具体tile请翻看 第三节 代码中的tile
normDataSet = dataSet - tile(minVals, (m,1))
# 把最大最小差值扩充为dataSet同shape,然后作商,是指对应元素进行除法运算,而不是矩阵除法。
# 矩阵除法在numpy中要用linalg.solve(A,B)
normDataSet = normDataSet/tile(ranges, (m,1))
return normDataSet, ranges, minVals
def img2vector(filename):
"""
将图片数据转换为01矩阵。
每张图片是32*32像素,也就是一共1024个字节。
因此转换的时候,每行表示一个样本,每个样本含1024个字节。
"""
# 每个样本数据是1024=32*32个字节
returnVect = zeros((1,1024))
fr = open(filename)
# 循环读取32行,32列。
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
def handwritingClassTest():
hwLabels = []
# 加载训练数据
trainingFileList = listdir('trainingDigits')
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
# 从文件名中解析出当前图像的标签,也就是数字是几
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
# 加载测试数据
testFileList = listdir('testDigits') #iterate through the test set
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print "the classifier came back with: %d, the real answer is: %d, The predict result is: %s" % (classifierResult, classNumStr, classifierResult==classNumStr)
if (classifierResult != classNumStr): errorCount += 1.0
print "\nthe total number of errors is: %d / %d" %(errorCount, mTest)
print "\nthe total error rate is: %f" % (errorCount/float(mTest))
if __name__== "__main__":
handwritingClassTest()
引用原话:k近邻算法是分类数据最简单最有效的算法。k紧邻算法必须保存全部数据集,如果训练数据集很大,必须使用大量的存储空间。此外,由于必须对数据集中的每个数据计算距离值,实际使用时可能非常耗时。(这些是很容易理解的)
k近邻算法的另外一个缺陷是它无法给出任何数据的基础结构信息,因此我们也无法知晓平均实例样本和典型实例样本具有什么特征。(就是说k近邻算法只能是单纯的比较样本特征值之间的大小关系,给出样本之间的欧氏距离,并不能给出这些特征数据的内在含义。还是比较抽象!用一句不太恰当的描述是:k近邻算法只是知道两个样本之间的有区别,长得像不像,机械的区分样本之间的差别,没有类似于人的理解能力。)