接《Flink源码系列——JobManager处理SubmitJob的过程》,在从JobManager中,将SubmitTask提交到TaskManager后,继续分析TaskManager的处理逻辑。
TaskManager是个Actor,混入了LeaderSessionMessageFilter这个trait,所以在从JobManager接收到JobManagerMessages.LeaderSessionMessage[TaskMessages.SubmitTask[TaskDeploymentDescriptor]]这样的一个封装消息后,会先在LeaderSessionMessageFilter这个trait的receive方法中,进行消息的过滤,过滤逻辑如下:
abstract override def receive: Receive = {
case leaderMessage @ LeaderSessionMessage(msgID, msg) =>
leaderSessionID match {
case Some(leaderId) =>
if (leaderId.equals(msgID)) {
super.receive(msg)
} else {
handleDiscardedMessage(leaderId, leaderMessage)
}
case None =>
handleNoLeaderId(leaderMessage)
}
case msg: RequiresLeaderSessionID =>
throw new Exception(s"Received a message $msg without a leader session ID, even though" +
s" the message requires a leader session ID.")
case msg =>
super.receive(msg)
}
逻辑拆分如下:
a、接收到的是一个LeaderSessionMessage消息
a.1、当前TaskManager中有leaderSessionID
a.1.1、TaskManager所属的JobManager的sessionID和消息中的sessionID相同,则调用父类的receive方法
a.1.2、两个sessionID不同,则说明是一个过期消息,忽视该消息a.2、当前TaskManager没有leaderSessionID,则打印个日志,不做任何处理
b、接收到的是一个RequiresLeaderSessionID消息,说明消息需要leaderSessionID,但其又没有封装在LeaderSessionMessage中,属于异常情况,抛出异常
c、其他消息,调用父类的receive方法
对于从JobManager接收到的上述消息,经过上述处理逻辑后,就变成TaskMessages.SubmitTask[TaskDeploymentDescriptor],并作为handleMessage方法的入参,SubmitTask是TaskMessage的子类,所以在handleMessage中的处理逻辑如下:
override def handleMessage: Receive = {
...
case message: TaskMessage => handleTaskMessage(message)
...
}
然后会就进入handleTaskMessage方法,如下:
private def handleTaskMessage(message: TaskMessage): Unit = {
...
case SubmitTask(tdd) => submitTask(tdd)
...
}
经过上述两步转化后,就会进入submitTask方法中,且入参就是TaskDeploymentDescriptor。
submitTask()方法的代码很长,但是逻辑不复杂,分块说明如下:
/** 获取当前JobManager的actor */
val jobManagerActor = currentJobManager match {
case Some(jm) => jm
case None =>
throw new IllegalStateException("TaskManager is not associated with a JobManager.")
}
/** 获取library缓存管理器 */
val libCache = libraryCacheManager match {
case Some(manager) => manager
case None => throw new IllegalStateException("There is no valid library cache manager.")
}
/** 获取blobCache */
val blobCache = this.blobCache match {
case Some(manager) => manager
case None => throw new IllegalStateException("There is no valid BLOB cache.")
}
/** 槽位编号校验 */
val slot = tdd.getTargetSlotNumber
if (slot < 0 || slot >= numberOfSlots) {
throw new IllegalArgumentException(s"Target slot $slot does not exist on TaskManager.")
}
/** 获取一些链接相关 */
val (checkpointResponder,
partitionStateChecker,
resultPartitionConsumableNotifier,
taskManagerConnection) = connectionUtils match {
case Some(x) => x
case None => throw new IllegalStateException("The connection utils have not been " +
"initialized.")
}
这部分逻辑就是获取一些处理句柄,如果获取不到,则抛出异常,并校验当前任务的槽位编号是否在有效范围,以及一些链接信息。
/** 构建JobManager的gateway */
val jobManagerGateway = new AkkaActorGateway(jobManagerActor, leaderSessionID.orNull)
/** 部分数据可能由于量较大,不方便通过rpc传输,会先持久化,然后在这里再加载回来 */
try {
tdd.loadBigData(blobCache.getPermanentBlobService);
} catch {
case e @ (_: IOException | _: ClassNotFoundException) =>
throw new IOException("Could not deserialize the job information.", e)
}
/** 获取jobInformation */
val jobInformation = try {
tdd.getSerializedJobInformation.deserializeValue(getClass.getClassLoader)
} catch {
case e @ (_: IOException | _: ClassNotFoundException) =>
throw new IOException("Could not deserialize the job information.", e)
}
/** 校验jobID信息 */
if (tdd.getJobId != jobInformation.getJobId) {
throw new IOException(
"Inconsistent job ID information inside TaskDeploymentDescriptor (" +
tdd.getJobId + " vs. " + jobInformation.getJobId + ")")
}
/** 获取taskInformation */
val taskInformation = try {
tdd.getSerializedTaskInformation.deserializeValue(getClass.getClassLoader)
} catch {
case e@(_: IOException | _: ClassNotFoundException) =>
throw new IOException("Could not deserialize the job vertex information.", e)
}
/** 统计相关 */
val taskMetricGroup = taskManagerMetricGroup.addTaskForJob(
jobInformation.getJobId,
jobInformation.getJobName,
taskInformation.getJobVertexId,
tdd.getExecutionAttemptId,
taskInformation.getTaskName,
tdd.getSubtaskIndex,
tdd.getAttemptNumber)
val inputSplitProvider = new TaskInputSplitProvider(
jobManagerGateway,
jobInformation.getJobId,
taskInformation.getJobVertexId,
tdd.getExecutionAttemptId,
new FiniteDuration(
config.getTimeout().getSize(),
config.getTimeout().getUnit()))
/** 构建task */
val task = new Task(
jobInformation,
taskInformation,
tdd.getExecutionAttemptId,
tdd.getAllocationId,
tdd.getSubtaskIndex,
tdd.getAttemptNumber,
tdd.getProducedPartitions,
tdd.getInputGates,
tdd.getTargetSlotNumber,
tdd.getTaskStateHandles,
memoryManager,
ioManager,
network,
bcVarManager,
taskManagerConnection,
inputSplitProvider,
checkpointResponder,
blobCache,
libCache,
fileCache,
config,
taskMetricGroup,
resultPartitionConsumableNotifier,
partitionStateChecker,
context.dispatcher)
log.info(s"Received task ${task.getTaskInfo.getTaskNameWithSubtasks()}")
上述逻辑还是在获取各种数据,主要的目的根据以上获取的变量,构建一个Task实例。
val execId = tdd.getExecutionAttemptId
// 将task添加到map
val prevTask = runningTasks.put(execId, task)
if (prevTask != null) {
// 对于ID已经存在一个task,则恢复回来,并报告一个错误
runningTasks.put(execId, prevTask)
throw new IllegalStateException("TaskManager already contains a task for id " + execId)
}
// 一切都好,我们启动task,让它开始自己的初始化
task.startTaskThread()
sender ! decorateMessage(Acknowledge.get())
这里的逻辑就是将新建的task加入到runningTasks这个map中,如果发现相同execID,已经存在执行的task,则先回滚,然后抛出异常。
一切都执行顺利的话,则启动task,并给sender发送一个ack消息。
task的启动,就是执行Task实例中的executingThread这个变量表示的线程。
public void startTaskThread() {
executingThread.start();
}
而executingThread这个变量的初始化是在Task的构造函数的最后进行的。
executingThread = new Thread(TASK_THREADS_GROUP, this, taskNameWithSubtask);
并且将Task实例自身作为其执行对象,而Task实现了Runnable接口,所以最后就是执行Task中的run()方法。
run方法的逻辑,先是进行状态的初始化,就是进入一个while循环,根据当前状态,执行不同的操作,有可能正常退出循环,进行向下执行,有可能直接reture,有可能抛出异常,逻辑如下:
while (true) {
ExecutionState current = this.executionState;
if (current == ExecutionState.CREATED) {
/** 如果是CREATED状态, 则先将状态转换为DEPLOYING, 然后退出循环 */
if (transitionState(ExecutionState.CREATED, ExecutionState.DEPLOYING)) {
/** 如果成功, 则说明我们可以开始启动我们的work了 */
break;
}
}
else if (current == ExecutionState.FAILED) {
/** 如果当前状态是FAILED, 则立即执行失败操作, 告诉TaskManager, 我们已经到达最终状态了, 然后直接返回 */
notifyFinalState();
if (metrics != null) {
metrics.close();
}
return;
}
else if (current == ExecutionState.CANCELING) {
if (transitionState(ExecutionState.CANCELING, ExecutionState.CANCELED)) {
/** 如果是CANCELING状态, 则告诉TaskManager, 我们到达最终状态了, 然后直接返回 */
notifyFinalState();
if (metrics != null) {
metrics.close();
}
return;
}
}
else {
/** 如果是其他状态, 则抛出异常 */
if (metrics != null) {
metrics.close();
}
throw new IllegalStateException("Invalid state for beginning of operation of task " + this + '.');
}
}
当从这个while循环正常退出后,继续向下执行,就是一个try-catch-finally的结构。
这里主要分析一下try块中的逻辑。
// activate safety net for task thread
LOG.info("Creating FileSystem stream leak safety net for task {}", this);
FileSystemSafetyNet.initializeSafetyNetForThread();
blobService.getPermanentBlobService().registerJob(jobId);
/**
* 首先, 获取一个 user-code 类加载器
* 这可能涉及下载作业的JAR文件和/或类。
*/
LOG.info("Loading JAR files for task {}.", this);
userCodeClassLoader = createUserCodeClassloader();
final ExecutionConfig executionConfig = serializedExecutionConfig.deserializeValue(userCodeClassLoader);
if (executionConfig.getTaskCancellationInterval() >= 0) {
/** 尝试取消task时, 两次尝试之间的时间间隔, 单位毫秒 */
taskCancellationInterval = executionConfig.getTaskCancellationInterval();
}
if (executionConfig.getTaskCancellationTimeout() >= 0) {
/** 取消任务的超时时间, 可以在flink的配置中覆盖 */
taskCancellationTimeout = executionConfig.getTaskCancellationTimeout();
}
/**
* 实例化AbstractInvokable的具体子类
* {@see StreamGraph#addOperator}
* {@see StoppableSourceStreamTask}
* {@see SourceStreamTask}
* {@see OneInputStreamTask}
*/
invokable = loadAndInstantiateInvokable(userCodeClassLoader, nameOfInvokableClass);
/** 如果当前状态'CANCELING'、'CANCELED'、'FAILED', 则抛出异常 */
if (isCanceledOrFailed()) {
throw new CancelTaskException();
}
这部分就是加载jar包,超时时间等获取,然后实例化AbstractInvokable的一个具体子类,目前主要是StoppableSourceStreamTask、SourceStreamTask、OneInputStreamTask 这三个子类。
并且会对状态进行检查,如果处于’CANCELING’、’CANCELED’、’FAILED’其中的一个状态,则抛出CancelTaskException异常。
LOG.info("Registering task at network: {}.", this);
network.registerTask(this);
// add metrics for buffers
this.metrics.getIOMetricGroup().initializeBufferMetrics(this);
// register detailed network metrics, if configured
if (taskManagerConfig.getConfiguration().getBoolean(TaskManagerOptions.NETWORK_DETAILED_METRICS)) {
// similar to MetricUtils.instantiateNetworkMetrics() but inside this IOMetricGroup
MetricGroup networkGroup = this.metrics.getIOMetricGroup().addGroup("Network");
MetricGroup outputGroup = networkGroup.addGroup("Output");
MetricGroup inputGroup = networkGroup.addGroup("Input");
// output metrics
for (int i = 0; i < producedPartitions.length; i++) {
ResultPartitionMetrics.registerQueueLengthMetrics(
outputGroup.addGroup(i), producedPartitions[i]);
}
for (int i = 0; i < inputGates.length; i++) {
InputGateMetrics.registerQueueLengthMetrics(
inputGroup.addGroup(i), inputGates[i]);
}
}
/** 接下来, 启动为分布式缓存进行文件的后台拷贝 */
try {
for (Map.Entry entry :
DistributedCache.readFileInfoFromConfig(jobConfiguration))
{
LOG.info("Obtaining local cache file for '{}'.", entry.getKey());
Future cp = fileCache.createTmpFile(entry.getKey(), entry.getValue(), jobId);
distributedCacheEntries.put(entry.getKey(), cp);
}
}
catch (Exception e) {
throw new Exception(
String.format("Exception while adding files to distributed cache of task %s (%s).", taskNameWithSubtask, executionId),
e);
}
/** 再次校验状态 */
if (isCanceledOrFailed()) {
throw new CancelTaskException();
}
这里最后,也会进行状态校验,以便可以快速执行取消操作。
TaskKvStateRegistry kvStateRegistry = network
.createKvStateTaskRegistry(jobId, getJobVertexId());
Environment env = new RuntimeEnvironment(
jobId, vertexId, executionId, executionConfig, taskInfo,
jobConfiguration, taskConfiguration, userCodeClassLoader,
memoryManager, ioManager, broadcastVariableManager,
accumulatorRegistry, kvStateRegistry, inputSplitProvider,
distributedCacheEntries, writers, inputGates,
checkpointResponder, taskManagerConfig, metrics, this);
/** 让task代码创建它的readers和writers */
invokable.setEnvironment(env);
// the very last thing before the actual execution starts running is to inject
// the state into the task. the state is non-empty if this is an execution
// of a task that failed but had backuped state from a checkpoint
if (null != taskStateHandles) {
if (invokable instanceof StatefulTask) {
StatefulTask op = (StatefulTask) invokable;
op.setInitialState(taskStateHandles);
} else {
throw new IllegalStateException("Found operator state for a non-stateful task invokable");
}
// be memory and GC friendly - since the code stays in invoke() for a potentially long time,
// we clear the reference to the state handle
//noinspection UnusedAssignment
taskStateHandles = null;
}
/** 在我们将状态切换到'RUNNING'状态时, 我们可以方法cancel方法 */
this.invokable = invokable;
/** 将状态从'DEPLOYING'切换到'RUNNING', 如果失败, 已经是在同一时间, 发生了 canceled/failed 操作。 */
if (!transitionState(ExecutionState.DEPLOYING, ExecutionState.RUNNING)) {
throw new CancelTaskException();
}
/** 告诉每个人, 我们切换到'RUNNING'状态了 */
notifyObservers(ExecutionState.RUNNING, null);
taskManagerActions.updateTaskExecutionState(new TaskExecutionState(jobId, executionId, ExecutionState.RUNNING));
/** 设置线程上下文类加载器 */
executingThread.setContextClassLoader(userCodeClassLoader);
/** run,这里就是真正开始执行处理逻辑的地方 */
invokable.invoke();
/** 确保, 如果task由于被取消而退出了invoke()方法, 我们可以进入catch逻辑块 */
if (isCanceledOrFailed()) {
throw new CancelTaskException();
}
其中的 invokable.invoke() 这句代码就是真正逻辑开始执行的地方,且一般会阻塞在这里,直至任务执行完成,或者被取消,发生异常等。
/** 完成生产数据分区。如果这里失败, 我们也任务执行失败 */
for (ResultPartition partition : producedPartitions) {
if (partition != null) {
partition.finish();
}
}
/**
* 尝试将状态从'RUNNING'修改为'FINISHED'
* 如果失败, 那么task是同一时间被执行了 canceled/failed 操作
*/
if (transitionState(ExecutionState.RUNNING, ExecutionState.FINISHED)) {
notifyObservers(ExecutionState.FINISHED, null);
}
else {
throw new CancelTaskException();
}
这里就是做收尾操作,以及把状态从’RUNNING’转换为’FINISHED’,并通知相关观察者。