题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4592;
题目分析: 本题其实就是一个普通的高斯消元题,但是本题数据范围巨大,所以不能用普通的高斯消元来写,只能采用求逆打表法,进行求解。只有满秩矩阵才能有逆元,通过消元可以看出,只有4,5时时多解的,所以其他就打表好了,但不能打0,1矩阵,还是会超时,最后打出的是十进制数就好办了。
代码如下:
#include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; int A2[4][2]= { {3,2},{3,1}, {2,3},{1,3} }; int A3[9][3]= { {5,1,6},{0,2,7},{5,4,3}, {1,3,1},{2,7,2},{4,6,4}, {6,1,5},{7,2,0},{3,4,5} }; int A6[36][6]= { {43,8,55,10,44,40},{3,20,53,17,14,4},{44,42,7,32,55,34},{13,21,56,1,59,17},{48,10,43,34,28,8},{53,4,59,20,13,5}, {8,28,2,27,34,44},{20,54,5,59,21,14},{42,43,10,48,2,55},{21,53,20,3,16,59},{10,27,40,55,42,28},{4,14,16,54,17,13}, {55,2,48,42,27,10},{53,5,56,1,59,17},{7,10,28,40,48,32},{56,20,14,5,3,1},{43,40,7,32,55,34},{59,16,3,21,54,20}, {10,27,42,48,2,55},{17,59,1,56,5,53},{32,48,40,28,10,7},{1,3,5,14,20,56},{34,55,32,7,40,43},{20,54,21,3,16,59}, {44,34,27,2,28,8},{14,21,59,5,54,20},{55,2,48,10,43,42},{59,16,3,20,53,21},{28,42,55,40,27,10},{13,17,54,16,14,4}, {40,44,10,55,8,43},{4,14,17,53,20,3},{34,55,32,7,42,44},{17,59,1,56,21,13},{8,28,34,43,10,48},{5,13,20,59,4,53} }; int A7[49][7]= { {109,65,14,84,88,16,96},{108,34,27,2,28,40,112},{3,20,53,81,110,84,56},{107,0,107,8,119,42,28},{96,20,86,69,59,21,14}, {27,34,108,32,28,10,7},{91,65,56,21,13,4,3},{65,99,21,86,68,56,16},{34,119,32,7,42,108,40},{20,54,69,91,5,86,84}, {0,0,8,28,34,107,42},{20,54,81,109,80,53,21},{34,119,2,112,42,27,10},{65,99,84,53,17,14,4},{14,21,59,5,54,68,88}, {27,32,107,8,119,42,28},{53,69,88,17,99,5,110},{107,8,119,34,0,34,119},{86,81,13,68,99,80,59},{108,2,107,8,119,42,28}, {56,84,110,80,54,17,13},{84,86,5,91,5,86,84},{2,7,8,27,8,7,2},{81,91,17,96,17,91,81},{8,28,34,107,34,28,8}, {69,109,68,3,68,109,69},{32,112,8,108,8,112,32},{21,53,80,109,80,53,21},{88,68,54,5,59,21,14},{28,42,119,8,107,32,27}, {110,5,99,17,88,69,53},{119,34,0,34,119,8,107},{59,80,99,68,13,81,86},{28,42,119,8,107,2,108},{13,17,54,80,110,84,56}, {16,56,68,86,21,99,65},{40,108,42,7,32,119,34},{84,86,5,91,69,54,20},{42,107,34,28,8,0,0},{21,53,80,109,81,54,20}, {10,27,42,112,2,119,34},{4,14,17,53,84,99,65},{96,16,88,84,14,65,109},{112,40,28,2,27,34,108},{56,84,110,81,53,20,3}, {28,42,119,8,107,0,107},{14,21,59,69,86,20,96},{7,10,28,32,108,34,27},{3,4,13,21,56,65,91} }; int A8[64][8]= { {220,138,7,128,199,170,108,40},{214,81,13,64,237,1,238,68},{27,0,27,32,107,168,199,130},{237,81,54,16,14,5,3,1}, {183,138,108,8,112,160,192,128},{216,0,216,4,214,21,227,65},{107,138,176,2,183,128,119,34},{59,81,224,1,227,85,54,20}, {138,219,10,192,42,171,130,108},{81,219,17,224,65,3,69,238},{0,0,32,112,136,172,42,199},{81,219,65,56,21,13,4,3}, {138,219,130,28,168,176,32,192},{0,0,4,14,17,53,84,227},{138,219,136,7,130,192,162,119},{81,219,80,3,84,213,65,54}, {7,10,28,160,172,2,171,170},{13,17,54,16,14,5,3,1},{27,32,107,136,183,10,172,168},{54,65,213,68,59,20,13,5}, {108,130,171,34,220,40,176,160},{216,4,214,17,237,80,53,21},{176,136,108,8,112,160,192,128},{224,80,56,5,53,64,213,85}, {128,192,160,112,136,172,42,199},{64,224,16,216,84,14,65,237},{32,112,136,172,10,183,136,107},{16,56,68,214,69,59,21,14}, {8,28,34,107,162,220,168,112},{4,14,17,53,80,237,17,214},{2,7,8,27,42,112,130,183},{1,3,5,14,17,53,84,227}, {199,42,172,136,112,160,192,128},{237,65,14,84,216,16,224,64},{107,136,183,10,172,136,112,32},{14,21,59,69,214,68,56,16}, {112,168,220,162,107,34,28,8},{214,17,237,80,53,17,14,4},{183,130,112,42,27,8,7,2},{227,84,53,17,14,5,3,1}, {170,171,2,172,160,28,10,7},{1,3,5,14,16,54,17,13},{168,172,10,183,136,107,32,27},{5,13,20,59,68,213,65,54}, {160,176,40,220,34,171,130,108},{21,53,80,237,17,214,4,216},{128,192,160,112,8,108,136,176},{85,213,64,53,5,56,80,224}, {108,130,171,42,192,10,219,138},{238,69,3,65,224,17,219,81},{199,42,172,136,112,32,0,0},{3,4,13,21,56,65,219,81}, {192,32,176,168,28,130,219,138},{227,84,53,17,14,4,0,0},{119,162,192,130,7,136,219,138},{54,65,213,84,3,80,219,81}, {40,108,170,199,128,7,138,220},{68,238,1,237,64,13,81,214},{130,199,168,107,32,27,0,27},{1,3,5,14,16,54,81,237}, {128,192,160,112,8,108,138,183},{65,227,21,214,4,216,0,216},{34,119,128,183,2,176,138,107},{20,54,85,227,1,224,81,59} }; const int maxn=405; int a[maxn][maxn*2+1],x[maxn]; int equ,var; int free_num,ans=100000000; void Debug(){ int i,j; for(i=0;ia[max_r][col]) max_r=i; if(max_r!=k){ for(int i=k;i0){ for(int num=0;num<(1<<(var-k));num++){ int minn=0; memset(x,0,sizeof(x)); for(int ans=0;ans=0;--i) { int tmp=a[i][var]; for(int j=i+1;j=0;--i) { int tmp=a[i][var]; for(int j=i+1;j=l){ a[r][var]=X&1; X>>=1; r--; } } int ans=Gauss(); printf("%d\n",ans); continue; } int ans=0; int t[80]; for(int i=0; i>=1; } ans+=t; } printf("%d\n",ans); } return 0; }