- 数字内容体验未来趋势:五大平台横向对比与深度解析
清风徐徐de来
其他
内容概要当前,企业数字化转型的核心战场正逐步向数字内容体验的精细化运营转移。随着用户行为碎片化与需求多元化趋势加剧,AI驱动的智能推荐系统、基于数据决策的动态优化能力,以及跨渠道的品牌一致性维护,已成为衡量内容平台竞争力的三大核心维度。本文将围绕这三大支柱,通过横向对比主流平台的技术架构与落地实践,揭示未来数字内容体验的演进方向。首先,AI驱动不仅改变了内容分发的效率,更通过深度学习算法实现用户行
- 架构师技术图谱
modouwu
系统架构
分布式漫谈分布式系统大数据存储微服务可落地的DDD(6)-工程结构推荐系统框架消息队列编程语言设计模式重构集群
- 优化算法全景解析:从梯度下降到群体智能
welcome_123_
算法python人工智能
一、引言:为什么需要优化算法?在AlphaGo击败人类围棋冠军的背后,在特斯拉自动驾驶系统实时决策的瞬间,在推荐系统精准推送内容的过程中,优化算法始终是推动这些技术落地的核心引擎。无论是机器学习模型的训练,还是复杂系统的参数调优,优化算法的本质是:在给定的约束条件下,找到使目标函数最优的解。本文将深入解析优化算法的核心原理、经典方法、现代进展及实战应用,助你全面掌握这一技术利器。二、优化算法分类图
- 2024年Python最新Python爬虫淘宝母婴销售数据可视化和商品推荐系统 开题报告(2),2024年最新高级开发面试题及答案大全
2401_84140628
程序员python爬虫信息可视化
文末有福利领取哦~一、Python所有方向的学习路线Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。二、Python必备开发工具三、Python视频合集观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。四、实战案例光学理论是没用的,要学会跟着
- 【论文阅读】Revisiting the Assumption of Latent Separability for Backdoor Defenses
开心星人
论文阅读论文阅读
https://github.com/Unispac/Circumventing-Backdoor-Defenses摘要和介绍在各种后门毒化攻击中,来自目标类别的毒化样本和干净样本通常在潜在空间中形成两个分离的簇。这种潜在的分离性非常普遍,甚至在防御研究中成为了一种默认假设,我们称之为潜在分离性假设。基于这一假设设计的防御方法通过在潜在空间中进行聚类分析来识别毒化样本。具体来说,这些防御方法首先在
- 【大数据AI人工智能大模型实战】从0到1 全流程搭建一个商品、店铺、直播推荐 Feeds 流系统详细方案步骤和代码实例 3
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型计算大数据人工智能推荐系统
从0到1全流程搭建一个商品、店铺、直播推荐Feeds流系统详细方案步骤和代码实例关键词:推荐系统、Feeds流、商品推荐、店铺推荐、直播推荐、实时计算、离线计算、数据流处理1.背景介绍在当今的电子商务和社交媒体时代,个性化推荐系统已经成为提升用户体验和增加平台粘性的关键技术。特别是在电商平台中,一个高效的商品、店铺和直播推荐Feeds流系统可以显著提高用户的购物体验,增加商品曝光率,并最终提升平台
- [论文阅读] CLIP-based fusion-modal reconstructing hashing for large-scaleunsupervised cross-modal retri
2301_80732299
论文阅读
摘要随着多模态数据的激增,人们不再满足于单一的数据检索模式来获取信息。深度哈希检索算法以其存储效率高、查询速度快等优点受到广泛关注。目前,现有的无监督哈希方法普遍存在两方面的局限性:(1)现有方法不能充分捕获不同模态数据中潜在的语义相关性和共存信息,导致缺乏有效的特征和哈希编码表示来弥合多模态数据中的异构和语义差距。(2)现有的无监督方法通常构造相似矩阵来指导哈希码学习,存在不准确的相似度问题,导
- AI Agent智能应用从0到1定制开发Langchain+LLM全流程解决方案与落地实战
AI知识分享官
人工智能langchain算法数据挖掘计算机视觉机器学习产品经理
大模型微调实战:精通、指令微调、开源大模型微调、对齐与垂直领域应用29套AI全栈大模型项目实战,人工智能视频课程-多模态大模型,微调技术训练营,大模型多场景实战,AI图像处理,AI量化投资,OPenCV视觉处理,机器学习,Pytorch深度学习,推荐系统,自动驾驶,训练私有大模型,LLM大语言模型,大模型多场景实战,Agent智能应用,AIGC实战落地,ChatGPT虚拟数字人,Djourney智
- 人工智能之推荐系统实战系列(协同过滤,矩阵分解,FM与DeepFM算法)
weixin_58351028
人工智能深度学习神经网络算法机器学习
一.推荐系统介绍和应用(1)推荐系统通俗解读推荐系统就是来了就别想走了。例如在大数据时代中京东越买越想买,抖音越刷越是自己喜欢的东西,微博越刷越过瘾。(2).推荐系统发展简介1)推荐系统无处不在,它是根据用户的行为决定推荐的内容。用户每天在互联网中都会留下足迹,这样就会越来越多的用户画像。2)为什么要推荐系统卖的好的商品就那几种,其它就不管了吗?答案是否定的。80%的销售来自20%的热门商品,要想
- 探索机器学习在个性化推荐系统中的妙用:Python实战解析
Echo_Wish
前沿技术人工智能机器学习python人工智能
探索机器学习在个性化推荐系统中的妙用:Python实战解析在信息爆炸的时代,我们每天都被大量的内容包围着。如何在海量的信息中找到真正适合自己的内容?这就是个性化推荐系统的使命。作为一名热爱人工智能和Python的技术人,今天我想和大家聊聊机器学习在个性化推荐系统中的应用,并通过具体的代码示例,带大家一起探索这个领域的奥秘。一、个性化推荐系统的意义首先,我们来思考一个问题:为什么需要个性化推荐系统?
- AI前端开发技能提升路径:从入门到精通,成为AI时代的前端专家
前端
在数字时代飞速发展的今天,AI写代码工具的出现为前端开发带来了革命性的变化。AI前端开发,这个融合人工智能与前端技术的领域,正以前所未有的速度蓬勃发展,为开发者们带来了巨大的机遇与挑战。本文将为你详细解读AI前端开发技能提升路径,助你成为AI时代的前端专家。1.AI前端开发:机遇与挑战并存AI前端开发,简单来说,就是将人工智能技术融入到前端应用中,例如开发智能推荐系统、AI图像处理工具、基于自然语
- 基于深度学习的商品推荐
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的商品推荐系统利用深度学习技术对用户的行为和商品的特征进行分析和建模,从而向用户推荐最相关的商品。这类系统在电子商务、社交媒体和内容推荐等领域中具有广泛应用。以下是对这一领域的系统介绍:1.任务和目标商品推荐系统的主要任务和目标包括:个性化推荐:根据用户的兴趣和行为,向用户推荐个性化的商品列表。提高用户体验:通过精准推荐,提高用户的购物体验和满意度。增加销售额:通过推荐相关商品,增加用
- 19.推荐系统的隐私保护
郑万通
推荐系统隐私保护
接下来我们继续学习推荐系统的最后一个主题:推荐系统的隐私保护。在现代推荐系统中,用户隐私保护是一个至关重要的问题。我们将探讨隐私保护的必要性、常见的隐私保护技术,以及如何在推荐系统中实现这些技术。推荐系统的隐私保护隐私保护的必要性推荐系统通常需要收集和处理大量的用户数据,包括用户的行为数据(如点击、浏览、购买记录)和个人信息(如年龄、性别、地理位置)。这些数据对于提供个性化推荐至关重要,但也存在隐
- 17.推荐系统的在线学习与实时更新
郑万通
推荐系统
接下来就讲解推荐系统的在线学习与实时更新。推荐系统的在线学习和实时更新是为了使推荐系统能够动态地适应用户行为的变化,保持推荐结果的实时性和相关性。以下是详细的介绍和实现方法。推荐系统的在线学习与实时更新在线学习的概念在线学习(OnlineLearning)是一种机器学习方法,与传统的批量学习(BatchLearning)不同,在线学习模型能够在数据流到达时逐步更新,而不是在整个数据集上训练一次。这
- 13.推荐系统的性能优化
郑万通
性能优化
接下来我们将学习推荐系统的性能优化。推荐系统的性能优化对于提升推荐结果的生成速度和系统的可扩展性至关重要,尤其是在处理大规模数据和高并发请求时。在这一课中,我们将介绍以下内容:性能优化的重要性常见的性能优化方法实践示例1.性能优化的重要性推荐系统的性能优化主要体现在以下几个方面:响应速度:提高推荐结果的生成速度,减少用户等待时间,提升用户体验。系统可扩展性:支持大规模用户和数据,确保系统在高并发请
- 【关注可白嫖源码】个性化新闻内容推荐系统的设计与实现,怎么设计这个系统呢,不会的看过来吧
WX_BYSJ8341
程序开发程序定制毕设毕设定制毕设代做源码课设
随着互联网的发展,信息的获取变得极其便捷,但与此同时,海量的新闻内容使得用户面临信息过载的困境。为了提高用户体验并帮助他们从中筛选出最感兴趣的新闻,个性化新闻内容推荐系统应运而生。该系统通过分析用户的兴趣、行为和偏好,智能推荐符合其需求的新闻内容。以下是对个性化新闻推荐系统设计与实现的全面探讨。一、设计目标个性化新闻推荐系统的主要设计目标包括:提高用户体验:根据用户兴趣和行为偏好,个性化地推荐最相
- DeepSeek引发的AI思考
几道之旅
人工智能大数据
DeepSeek引发的AI思考:技术浪潮下的应用、焦虑与战略取舍一、AI的重点应用领域:从“替代”到“共生”1.办公自动化:效率与精准的再定义DeepSeek在办公场景中的应用已从简单的信息检索升级为复杂的决策支持。例如,金融行业通过其实时数据分析能力,捕捉市场波动中的套利机会,年化收益率提升15%;电商平台则利用用户行为数据优化推荐系统,购买转化率提升30%。这些案例表明,AI正从“工具”演变为
- F-PointNet 论文阅读理解
咸鱼和白菜
目标检测f-pointnet点云目标检测
总述本文提出一种方法:使用成熟的2D的目标检测方法中cnn提供的regionproposal和3D的目标检测定位(也就是pointnet处理点云),将二者结合利用RGB-D映射和一个叫做锥体(Frustum)?形成一个3D的box参数进行输出。本文主要贡献就是在“一个叫做锥(Frustum)”的使用上结合2D的regionpropos和点云进行3D的分割和box的输出。为方便理解与书写,按照文中顺
- 【旅游管理与推荐系统】Python+Django网页界面平台+协同过滤推荐算法+管理系统
网站开发
一、介绍旅游管理与推荐系统。本系统使用Python作为主要编程语言,前端采用HTML、CSS、BootStrap等技术实现界面展示平台的开发,后端使用Django框架处理用户响应请求,并使用Ajax等技术实现前后端的数据通信。本系统主要功能有:系统分为两个角色:用户和管理员对于用户角色可以进行登录、注册、查看旅游景点信息、点赞、收藏、购买景点门票、发布评论、对景点进行评分、查看个人订单、查看个人收
- 深度学习-电商推荐
小赖同学啊
人工智能深度学习人工智能
下面为你介绍使用深度学习实现电商推荐系统的代码示例。我们将构建一个基于神经网络的简单推荐模型,以用户的历史购买行为和商品特征为基础,预测用户对商品的偏好。这里我们使用Python的TensorFlow和Keras库来实现。问题分析电商推荐系统的核心目标是根据用户的历史行为和商品特征,预测用户对未购买商品的喜好程度,从而为用户推荐可能感兴趣的商品。我们将通过构建一个神经网络模型,输入用户特征和商品特
- ✅毕业设计:python商品推荐系统+协同过滤推荐算法+网络爬虫 2种推荐算法 计算机毕业设计 大数据(附源码)✅
vx_biyesheji0004
biyesheji0001biyesheji0005biyesheji0004课程设计python推荐算法大数据毕业设计爬虫商品推荐系统
博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌>想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。点击查看作者主页,了解更多项目!感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业。1、毕业设计:2025年
- DeepSeek图神经网络(Graph Neural Networks, GNNs)基础与实践
Evaporator Core
Python开发经验深度学习DeepSeek快速入门神经网络人工智能深度学习
图神经网络(GraphNeuralNetworks,GNNs)是一种专门用于处理图结构数据的深度学习模型。与传统的神经网络不同,GNNs能够捕捉节点之间的关系和图的全局结构,广泛应用于社交网络分析、推荐系统、化学分子建模等领域。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练图神经网络。本文将详细介绍如何使用DeepSeek进行图神经网络的基础与实践,并通过代码示例帮助你掌握这些
- Java分布式流处理,flink+kafka实现电商网站个性化商品推荐系统
图苑
分布式javaflink
文章目录戳底部名片,一起变现技术栈选择设计实现思路实现步骤及示例代码1.数据采集2.数据预处理3.特征工程4.模型训练5.结果输出6.前端展示戳底部名片,一起变现在现代电商环境中,用户每天都会浏览大量商品页面,而这些行为数据中蕴藏着丰富的信息。通过分析用户的浏览历史、购买记录以及对特定商品的兴趣程度,我们可以为用户提供更加个性化的商品推荐,从而提升用户体验和转化率。为了实现实时的个性化推荐,我们需
- 向量数据库之Milvus
james二次元
数据库向量数据库milvus向量数据库数据库图像搜索自然语言处理
Milvus是一个开源的向量数据库,专门设计用于高效存储、管理和搜索大规模向量数据。它常用于机器学习、人工智能、推荐系统、图像搜索、自然语言处理等领域,特别适合处理需要高效相似性搜索的应用场景。Milvus由Zilliz开发,具有高性能、可扩展性和易用性。基本概念与架构1.基本概念向量数据(VectorData):Milvus主要处理高维向量数据,常见于图像、文本、视频等非结构化数据的特征向量表示
- 一步一步生成音乐类小程序的详细指南,结合AI辅助开发的思路
星糖曙光
后端语言(nodejavascriptvue等等)笔记人工智能小程序javascriptnode.js
以下是一步一步生成音乐类小程序的详细指南,结合AI辅助开发的思路:需求分析阶段核心功能梳理音乐播放器(播放/暂停/进度条/音量)歌单分类(流行/古典/摇滚等)用户系统(登录/收藏/历史记录)搜索功能(歌曲/歌手/专辑)推荐系统(根据用户偏好推荐)技术选型前端:微信小程序原生开发或Taro框架(跨平台)后端:Node.js+Express或Python+Flask数据库:MySQL或MongoDB存
- AI代码生成器赋能电商:提升个性化推荐系统前端开发效率
前端
在当今竞争激烈的电子商务环境中,个性化推荐系统已成为提升用户体验和转化率的关键因素。一个优秀的推荐系统能够根据用户的浏览历史、购买行为等数据,精准地推荐他们感兴趣的商品,从而提高用户的粘性和购买意愿。然而,构建一个高效、灵活的个性化推荐系统前端,却面临着诸多挑战:漫长的开发周期、高昂的开发成本以及复杂的维护工作,常常让开发团队疲于奔命。幸运的是,随着人工智能技术的飞速发展,“AI写代码工具”正在彻
- 【文献阅读分享】PAP-REC:个性化自动提示生成框架✨
Sheakan
推荐系统论文阅读总结人工智能推荐系统
标题期刊年份PAP-REC:PersonalizedAutomaticPromptforRecommendationLanguageModelACMTransactionsonInformationSystems(TOIS)2024研究背景在信息爆炸的时代,我们每天都要面对海量的数据和选择,这时候推荐系统就像我们的智能小助手,帮助我们在茫茫信息海洋中找到真正需要的资源。但是,传统的推荐系统模型大多
- Spark图书数据分析系统 Springboot协同过滤-余弦函数推荐系统 爬虫1万+数据 大屏数据展示 + [手把手视频教程 和 开发文档]
QQ-1305637939
毕业设计大数据毕设图书数据分析sparkspringboot爬虫
Spark图书数据分析系统Springboot协同过滤-余弦函数推荐系统爬虫1万+数据大屏数据展示+[手把手视频教程和开发文档]【亮点功能】1.Springboot+Vue+Element-UI+Mysql前后端分离2.Echarts图表统计数据,直观展示数据情况3.发表评论后,用户可以回复评论,回复的评论可以被再次回复,一级评论可以添加图片附件4.爬虫图书数据1万+5.推荐图书列表展示,推荐图书
- 智能房屋推荐系统 爬虫1w+数据 协同过滤余弦函数推荐
小盼江
课题设计毕设课设爬虫推荐算法毕业设计课程设计
智能房屋推荐系统爬虫1w+数据协同过滤余弦函数推荐毕设课设【亮点功能】1.Springboot+Vue+Element-UI+Mysql前后端分离2.Echarts图表统计数据,直观展示数据情况3.发表评论后,用户可以回复评论,回复的评论可以被再次回复,一级评论可以添加图片附件\4.爬虫房屋数据1万+5.推荐房屋列表展示,使用协同过滤余弦函数根据用户的评论,收藏,浏览历史数据进行推荐6.数据导出和
- Hadoop智能房屋推荐系统 爬虫1w+ 协同过滤余弦函数推荐 代码+视频教程+文档
小盼江
课题设计Hadoop课设hadoop爬虫大数据
Hadoop智能房屋推荐系统爬虫1w+协同过滤余弦函数推荐带视频教程毕设设计课题设计【Hadoop项目】1.data.csv上传到hadoop集群环境2.data.csv数据清洗3.MapReducer数据汇总处理,将Reducer的结果数据保存到本地Mysql数据库中4.Springboot+Echarts+MySQL显示数据分析结果分析数据维度如下:【房屋分类热度】【各分类下房屋数量及占比】【
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。