pandas案例分析,附加numpy matplotlib

import pandas as pd

df=pd.read_csv('',sep=';')

这是如果出现;  说明是用;做分隔符,而不是默认的,

 

import pandas as pd
red_df = pd.read_csv('winequality-red.csv', sep=';')
white_df = pd.read_csv('winequality-white.csv', sep=';')
red_df.head()
white_df.head()

fixed_acidity volatile_acidity citric_acid residual_sugar chlorides free_sulfur_dioxide total_sulfur_dioxide density pH sulphates alcohol quality
0 7.0 0.27 0.36 20.7 0.045 45.0 170.0 1.0010 3.00 0.45 8.8 6
1 6.3 0.30 0.34 1.6 0.049 14.0 132.0 0.9940 3.30 0.49 9.5 6
2 8.1 0.28 0.40 6.9 0.050 30.0 97.0 0.9951 3.26 0.44 10.1 6
3 7.2 0.23 0.32 8.5 0.058 47.0 186.0 0.9956 3.19 0.40 9.9 6
4 7.2 0.23 0.32 8.5 0.058 47.0 186.0 0.9956 3.19 0.40 9.9 6

 

print(red_df.shape)

(1599, 12)

print(white_df.shape)

(4898, 12)
red_df.isnull().sum()
fixed_acidity           0
volatile_acidity        0
citric_acid             0
residual_sugar          0
chlorides               0
free_sulfur_dioxide     0
total_sulfur-dioxide    0
density                 0
pH                      0
sulphates               0
alcohol                 0
quality                 0
dtype: int64

white_df.isnull().sum()

fixed_acidity           0
volatile_acidity        0
citric_acid             0
residual_sugar          0
chlorides               0
free_sulfur_dioxide     0
total_sulfur_dioxide    0
density                 0
pH                      0
sulphates               0
alcohol                 0
quality                 0
dtype: int64
white_df.duplicated().sum()    重复值统计
937    但是重复行是不可以删除的

红葡萄酒数据集中有多少唯一的质量值?

red_df.quality.nunique()

6

红葡萄酒数据集中的平均密度是多少?

red_df.density.mean()

0.996746679174484

 

import numpy as np

a=np.random.random(1000)

生成1000个随机数的矩阵

np.mean(a)

求a得平均值
 

 

# 导入 numpy 和 pandas
import numpy as np
import pandas as pd
# 加载红葡萄酒和白葡萄酒数据集
red_df = pd.read_csv('winequality-red.csv', sep=';')
white_df = pd.read_csv('winequality-white.csv', sep=';')

# 为红葡萄酒数据框创建颜色数组
color_red =  np.repeat('red', red_df.shape[0])
# 为白葡萄酒数据框创建颜色数组
color_white = np.repeat('white', white_df.shape[0])

red_df['color'] = color_red
red_df.head()

fixed_acidity volatile_acidity citric_acid residual_sugar chlorides free_sulfur_dioxide total_sulfur-dioxide density pH sulphates alcohol quality color
0 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5 red
1 7.8 0.88 0.00 2.6 0.098 25.0 67.0 0.9968 3.20 0.68 9.8 5 red
2 7.8 0.76 0.04 2.3 0.092 15.0 54.0 0.9970 3.26 0.65 9.8 5 red
3 11.2 0.28 0.56 1.9 0.075 17.0 60.0 0.9980 3.16 0.58 9.8 6 red
4 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5 red

 

# 附加数据框
wine_df = red_df.append(white_df)

# 查看数据框,检查是否成功
wine_df.head()

alcohol chlorides citric_acid color density fixed_acidity free_sulfur_dioxide pH quality residual_sugar sulphates total_sulfur-dioxide total_sulfur_dioxide volatile_acidity
0 9.4 0.076 0.00 red 0.9978 7.4 11.0 3.51 5 1.9 0.56 34.0 NaN 0.70
1 9.8 0.098 0.00 red 0.9968 7.8 25.0 3.20 5 2.6 0.68 67.0 NaN 0.88
2 9.8 0.092 0.04 red 0.9970 7.8 15.0 3.26 5 2.3 0.65 54.0 NaN 0.76
3 9.8 0.075 0.56 red 0.9980 11.2 17.0 3.16 6 1.9 0.58 60.0 NaN 0.28
4 9.4 0.076 0.00 red 0.9978 7.4 11.0 3.51 5 1.9 0.56 34.0 NaN 0.70

 

 

 

将新组合的数据框保存为 winequality_edited.csv。务必设置 index=False,以避免保存未命名列!

wine_df.to_csv('winequality_edited.csv', index=False)

 

new_labels=list(red_df.columns)

new_labels[6]='total_sulfur_dioxide'

red_df.columns=new_labels

 

groupby函数

 

red_df.groupby('quality').mean()

求出平均值

red_df.groupby(['quality','color']).mean()

red_df.groupby(['quality','color'],as_index=False).mean()

不用颜色和质量做索引as_index=False

只对某一列做平均值

red_df.groupby(['quality','color'],as_index=False)['ph'].mean()

 

df.groupby('color').mean().quality
df.describe().pH
bin_edges = [2.72, 3.11, 3.21, 3.32, 4.01]
bin_names = ['high', 'mod_high', 'medium', 'low']
df['acidity_levels'] = pd.cut(df['pH'], bin_edges, labels=bin_names)
df.head()
df.groupby('acidity_levels').mean().quality
df.to_csv('winequality_edited.csv', index=False)

等效语句

# selecting malignant records in cancer data
df_m = df[df['diagnosis'] == 'M']
df_m = df.query('diagnosis == "M"')

# selecting records of people making over $50K
df_a = df[df['income'] == ' >50K']
df_a = df.query('income == " >50K"')
# get the median amount of alcohol content
# 获取酒精含量的中位数
df.alcohol.median()

# 选择酒精含量小于中位数的样本
low_alcohol =df[df.alcohol < 10.3]

# 选择酒精含量大于等于中位数的样本
high_alcohol =df[df.alcohol >= 10.3]

# 确保这些查询中的每个样本只出现一次
num_samples = df.shape[0]
num_samples == low_alcohol['quality'].count() + high_alcohol['quality'].count() # 应为真

# 获取低酒精含量组和高酒精含量组的平均质量评分

low_alcohol.quality.mean(), high_alcohol.quality.mean()

# 获取残留糖分的中位数

df.residual_sugar.median()

# 选择残留糖分小于中位数的样本
low_sugar =df[df.residual_sugar < 3]

# 选择残留糖分大于等于中位数的样本
high_sugar =df[df.residual_sugar >= 3]

# 确保这些查询中的每个样本只出现一次
num_samples == low_sugar['quality'].count() + high_sugar['quality'].count() # 应为真

 


# 获取低糖分组和高糖分组的平均质量评分
low_sugar.quality.mean(), high_sugar.quality.mean()

 

colors=['red','white']

wine_df.groupby('color')['quality'].mean().plot(kkind='bar',title='ceshi1',colors=['red','white'],alpha=.7)

 

 

 

引入sns  matplotlib 

import pandas as pd

import matplotlib.pyplot  as  plt

import seaborn as sns

%matplotlib inline

...

...

...

colors=['red','white']

color_means=wine_df.groupby('color')['quality'].mean()

color_means.plot(kkind='bar',title='ceshi1',colors=colors,alpha=.7)

plt.xlabel("colors",fontsize=18)

plt.ylabel("colors",fontsize=18)

 

 

 

counts= wine_df.groupby(['quality','color']).count()['pH']

counts

totals=wine_df.groupby('color').count()['pH']

proportions = counts /totals

proportions.plot(kind='bar',title='ceshi1',colors=colors,alpha=.7)

 

 

 

import matplotlib.pyplot as plt
% matplotlib inline

plt.bar([1, 2, 3], [224, 620, 425]);

pandas案例分析,附加numpy matplotlib_第1张图片

 

# 绘制条柱
plt.bar([1, 2, 3], [224, 620, 425])

# 为 x 轴指定刻度标签及其标签
plt.xticks([1, 2, 3], ['a', 'b', 'c']);

pandas案例分析,附加numpy matplotlib_第2张图片

# 用 x 轴的刻度标签绘制条柱
plt.bar([1, 2, 3], [224, 620, 425], tick_label=['a', 'b', 'c']);

 

plt.bar([1, 2, 3], [224, 620, 425], tick_label=['a', 'b', 'c'])
plt.title('Some Title')
plt.xlabel('Some X Label')
plt.ylabel('Some Y Label');

pandas案例分析,附加numpy matplotlib_第3张图片

 

# 用查询功能选择每个组,并获取其平均质量
median = df['alcohol'].median()
low = df.query('alcohol < {}'.format(median))
high = df.query('alcohol >= {}'.format(median))

mean_quality_low = low['quality'].mean()
mean_quality_high = high['quality'].mean()

 

# 用合适的标签创建柱状图
locations = [1, 2]
heights = [mean_quality_low, mean_quality_high]
labels = ['Low', 'High']
plt.bar(locations, heights, tick_label=labels)
plt.title('Average Quality Ratings by Alcohol Content')
plt.xlabel('Alcohol Content')
plt.ylabel('Average Quality Rating');

 

 

用 Matplotlib 绘制酒的类型和质量视图

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
% matplotlib inline
import seaborn as sns
sns.set_style('darkgrid')

wine_df = pd.read_csv('winequality_edited.csv')

# 获取每个等级和颜色的数量
color_counts = wine_df.groupby(['color', 'quality']).count()['pH']
color_counts

# 获取每个颜色的总数
color_totals = wine_df.groupby('color').count()['pH']
color_totals

# 将红葡萄酒等级数量除以红葡萄酒样本总数,获取比例
red_proportions = color_counts['red'] / color_totals['red']
red_proportions

# 将白葡萄酒等级数量除以白葡萄酒样本总数,获取比例
white_proportions = color_counts['white'] / color_totals['white']
white_proportions

ind = np.arange(len(red_proportions))  # 组的 x 坐标位置
width = 0.35       # 条柱的宽度

# 绘制条柱
red_bars = plt.bar(ind, red_proportions, width, color='r', alpha=.7, label='Red Wine')
white_bars = plt.bar(ind + width, white_proportions, width, color='w', alpha=.7, label='White Wine')

# 标题和标签
plt.ylabel('Proportion')
plt.xlabel('Quality')
plt.title('Proportion by Wine Color and Quality')
locations = ind + width / 2  # x 坐标刻度位置
labels = ['3', '4', '5', '6', '7', '8', '9']  # x 坐标刻度标签
plt.xticks(locations, labels)

# 图例
plt.legend()

 

red_proportions['9'] = 0
red_proportions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(python数据分析)