深入浅出FPGA-17-xilinx_zynq7000_EPP上一个简单实验(PS+PL)

引言

前面两个实验,PL是传统的FPGA开发,PS是传统的嵌入式开发。

zynq7000EPP是xilinx比较高端的FPGA开发板,XC7Z020内部集成了两个cortexa9的硬核,外部有1G的DDR3,所以单纯做FPGA太浪费了。但是单纯用PS资源,就没必要用FPGA了,所以只有将两者结合使用才能体现其价值所在。

即,PS+PL。添加自己的一个IP到AXI总线上,然后通过SDK编码控制它的寄存器,这就是本小节的实验内容。


17.1 实验目的

1》  熟悉zynq7000 EPP资源和design suite

2》  PL编码,PS编码,实现一个简单逻辑。

17.2 实验环境

Board :ZYNQ7000 EPP

Device:XC7Z020CLG484ACX1221

Design suite:14.1 (PlanAhead+XPS+SDK)

17.3   实验准备

a)        会planAhead创建工程:ps_pl。

b)        简单了解和使用XPS和SDK


17.4  实验内容

a)        添加自己一个IP:rill_ip,挂到AXI上,此IP有一个output连到外部一个LED上。

b)        在SDK编写C代码控制这个IP的寄存器来控制此设备,进而控制LED的闪烁。


17.5 实验步骤

a)        打开planAhead,创建embedded新工程,添加PS7。

b)        打开XPS->hardware,添加自己的ip:rill_ip。

c)        AXI4-lite.

d)        一个32位寄存器。

e)        生成driver。

f)         修改此IP的文件:MPD文件,rill_ip.vhd,user_logic.vhd。三个文件。

File:mpd,1个地方需要修改,如图:这3个文件的路径很深,不好找,截图上面有路径,方便很多。

可以根据截图找到对应位置,然后添加相应代码。

也可以参考附录代码。



File:rill_ip.vhd: 2个地方需要修改。

 

File:user_logic.vhd: 3个地方需要修改。

 

g)        将此ip添加到XPS工程。

h)        自动映射。注意port名称,ucf文件里要用。

i)          添加UCF文件,内容:ps_pl.ucf。

j)          Create TOP HDL,然后生成bitstream。

k)         导出hardware,launch SDK。

l)          在SDK里创建helloword工程。

m)      SDK编码,内容:helloworld.c。读写寄存器。

n)        Program FPGA

o)        Run AS,configure

p)        Run


17.6  实验结果

看板子,DS18这个led会由亮变灭:串口也有打印。

 

,

 



附:

文件1:rill_ip_v2_1_0.mpd:

###################################################################
##
## Name     : rill_ip
## Desc     : Microprocessor Peripheral Description
##          : Automatically generated by PsfUtility
##
###################################################################

BEGIN rill_ip

## Peripheral Options
OPTION IPTYPE = PERIPHERAL
OPTION IMP_NETLIST = TRUE
OPTION HDL = VHDL
OPTION IP_GROUP = MICROBLAZE:USER
OPTION DESC = RILL_IP
OPTION ARCH_SUPPORT_MAP = (others=DEVELOPMENT)


## Bus Interfaces
BUS_INTERFACE BUS = S_AXI, BUS_STD = AXI, BUS_TYPE = SLAVE

## Generics for VHDL or Parameters for Verilog
PARAMETER C_S_AXI_DATA_WIDTH = 32, DT = INTEGER, BUS = S_AXI, ASSIGNMENT = CONSTANT
PARAMETER C_S_AXI_ADDR_WIDTH = 32, DT = INTEGER, BUS = S_AXI, ASSIGNMENT = CONSTANT
PARAMETER C_S_AXI_MIN_SIZE = 0x000001ff, DT = std_logic_vector, BUS = S_AXI
PARAMETER C_USE_WSTRB = 0, DT = INTEGER
PARAMETER C_DPHASE_TIMEOUT = 8, DT = INTEGER
PARAMETER C_BASEADDR = 0xffffffff, DT = std_logic_vector, MIN_SIZE = 0x100, PAIR = C_HIGHADDR, ADDRESS = BASE, BUS = S_AXI
PARAMETER C_HIGHADDR = 0x00000000, DT = std_logic_vector, PAIR = C_BASEADDR, ADDRESS = HIGH, BUS = S_AXI
PARAMETER C_FAMILY = virtex6, DT = STRING
PARAMETER C_NUM_REG = 1, DT = INTEGER
PARAMETER C_NUM_MEM = 1, DT = INTEGER
PARAMETER C_SLV_AWIDTH = 32, DT = INTEGER
PARAMETER C_SLV_DWIDTH = 32, DT = INTEGER
PARAMETER C_S_AXI_PROTOCOL = AXI4LITE, TYPE = NON_HDL, ASSIGNMENT = CONSTANT, DT = STRING, BUS = S_AXI

## Ports
PORT led = "",DIR = O
PORT S_AXI_ACLK = "", DIR = I, SIGIS = CLK, BUS = S_AXI
PORT S_AXI_ARESETN = ARESETN, DIR = I, SIGIS = RST, BUS = S_AXI
PORT S_AXI_AWADDR = AWADDR, DIR = I, VEC = [(C_S_AXI_ADDR_WIDTH-1):0], ENDIAN = LITTLE, BUS = S_AXI
PORT S_AXI_AWVALID = AWVALID, DIR = I, BUS = S_AXI
PORT S_AXI_WDATA = WDATA, DIR = I, VEC = [(C_S_AXI_DATA_WIDTH-1):0], ENDIAN = LITTLE, BUS = S_AXI
PORT S_AXI_WSTRB = WSTRB, DIR = I, VEC = [((C_S_AXI_DATA_WIDTH/8)-1):0], ENDIAN = LITTLE, BUS = S_AXI
PORT S_AXI_WVALID = WVALID, DIR = I, BUS = S_AXI
PORT S_AXI_BREADY = BREADY, DIR = I, BUS = S_AXI
PORT S_AXI_ARADDR = ARADDR, DIR = I, VEC = [(C_S_AXI_ADDR_WIDTH-1):0], ENDIAN = LITTLE, BUS = S_AXI
PORT S_AXI_ARVALID = ARVALID, DIR = I, BUS = S_AXI
PORT S_AXI_RREADY = RREADY, DIR = I, BUS = S_AXI
PORT S_AXI_ARREADY = ARREADY, DIR = O, BUS = S_AXI
PORT S_AXI_RDATA = RDATA, DIR = O, VEC = [(C_S_AXI_DATA_WIDTH-1):0], ENDIAN = LITTLE, BUS = S_AXI
PORT S_AXI_RRESP = RRESP, DIR = O, VEC = [1:0], BUS = S_AXI
PORT S_AXI_RVALID = RVALID, DIR = O, BUS = S_AXI
PORT S_AXI_WREADY = WREADY, DIR = O, BUS = S_AXI
PORT S_AXI_BRESP = BRESP, DIR = O, VEC = [1:0], BUS = S_AXI
PORT S_AXI_BVALID = BVALID, DIR = O, BUS = S_AXI
PORT S_AXI_AWREADY = AWREADY, DIR = O, BUS = S_AXI

END


文件2:rill_ip.vhd

------------------------------------------------------------------------------
-- rill_ip.vhd - entity/architecture pair
------------------------------------------------------------------------------
-- IMPORTANT:
-- DO NOT MODIFY THIS FILE EXCEPT IN THE DESIGNATED SECTIONS.
--
-- SEARCH FOR --USER TO DETERMINE WHERE CHANGES ARE ALLOWED.
--
-- TYPICALLY, THE ONLY ACCEPTABLE CHANGES INVOLVE ADDING NEW
-- PORTS AND GENERICS THAT GET PASSED THROUGH TO THE INSTANTIATION
-- OF THE USER_LOGIC ENTITY.
------------------------------------------------------------------------------
--
-- ***************************************************************************
-- ** Copyright (c) 1995-2012 Xilinx, Inc.  All rights reserved.            **
-- **                                                                       **
-- ** Xilinx, Inc.                                                          **
-- ** XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"         **
-- ** AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND       **
-- ** SOLUTIONS FOR XILINX DEVICES.  BY PROVIDING THIS DESIGN, CODE,        **
-- ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,        **
-- ** APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION           **
-- ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,     **
-- ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE      **
-- ** FOR YOUR IMPLEMENTATION.  XILINX EXPRESSLY DISCLAIMS ANY              **
-- ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE               **
-- ** IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR        **
-- ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF       **
-- ** INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS       **
-- ** FOR A PARTICULAR PURPOSE.                                             **
-- **                                                                       **
-- ***************************************************************************
--
------------------------------------------------------------------------------
-- Filename:          rill_ip.vhd
-- Version:           1.00.a
-- Description:       Top level design, instantiates library components and user logic.
-- Date:              Mon Nov 05 13:53:37 2012 (by Create and Import Peripheral Wizard)
-- VHDL Standard:     VHDL'93
------------------------------------------------------------------------------
-- Naming Conventions:
--   active low signals:                    "*_n"
--   clock signals:                         "clk", "clk_div#", "clk_#x"
--   reset signals:                         "rst", "rst_n"
--   generics:                              "C_*"
--   user defined types:                    "*_TYPE"
--   state machine next state:              "*_ns"
--   state machine current state:           "*_cs"
--   combinatorial signals:                 "*_com"
--   pipelined or register delay signals:   "*_d#"
--   counter signals:                       "*cnt*"
--   clock enable signals:                  "*_ce"
--   internal version of output port:       "*_i"
--   device pins:                           "*_pin"
--   ports:                                 "- Names begin with Uppercase"
--   processes:                             "*_PROCESS"
--   component instantiations:              "I_<#|FUNC>"
------------------------------------------------------------------------------

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

library proc_common_v3_00_a;
use proc_common_v3_00_a.proc_common_pkg.all;
use proc_common_v3_00_a.ipif_pkg.all;

library axi_lite_ipif_v1_01_a;
use axi_lite_ipif_v1_01_a.axi_lite_ipif;

library rill_ip_v1_00_a;
use rill_ip_v1_00_a.user_logic;

------------------------------------------------------------------------------
-- Entity section
------------------------------------------------------------------------------
-- Definition of Generics:
--   C_S_AXI_DATA_WIDTH           -- AXI4LITE slave: Data width
--   C_S_AXI_ADDR_WIDTH           -- AXI4LITE slave: Address Width
--   C_S_AXI_MIN_SIZE             -- AXI4LITE slave: Min Size
--   C_USE_WSTRB                  -- AXI4LITE slave: Write Strobe
--   C_DPHASE_TIMEOUT             -- AXI4LITE slave: Data Phase Timeout
--   C_BASEADDR                   -- AXI4LITE slave: base address
--   C_HIGHADDR                   -- AXI4LITE slave: high address
--   C_FAMILY                     -- FPGA Family
--   C_NUM_REG                    -- Number of software accessible registers
--   C_NUM_MEM                    -- Number of address-ranges
--   C_SLV_AWIDTH                 -- Slave interface address bus width
--   C_SLV_DWIDTH                 -- Slave interface data bus width
--
-- Definition of Ports:
--   S_AXI_ACLK                   -- AXI4LITE slave: Clock 
--   S_AXI_ARESETN                -- AXI4LITE slave: Reset
--   S_AXI_AWADDR                 -- AXI4LITE slave: Write address
--   S_AXI_AWVALID                -- AXI4LITE slave: Write address valid
--   S_AXI_WDATA                  -- AXI4LITE slave: Write data
--   S_AXI_WSTRB                  -- AXI4LITE slave: Write strobe
--   S_AXI_WVALID                 -- AXI4LITE slave: Write data valid
--   S_AXI_BREADY                 -- AXI4LITE slave: Response ready
--   S_AXI_ARADDR                 -- AXI4LITE slave: Read address
--   S_AXI_ARVALID                -- AXI4LITE slave: Read address valid
--   S_AXI_RREADY                 -- AXI4LITE slave: Read data ready
--   S_AXI_ARREADY                -- AXI4LITE slave: read addres ready
--   S_AXI_RDATA                  -- AXI4LITE slave: Read data
--   S_AXI_RRESP                  -- AXI4LITE slave: Read data response
--   S_AXI_RVALID                 -- AXI4LITE slave: Read data valid
--   S_AXI_WREADY                 -- AXI4LITE slave: Write data ready
--   S_AXI_BRESP                  -- AXI4LITE slave: Response
--   S_AXI_BVALID                 -- AXI4LITE slave: Resonse valid
--   S_AXI_AWREADY                -- AXI4LITE slave: Wrte address ready
------------------------------------------------------------------------------

entity rill_ip is
  generic
  (
    -- ADD USER GENERICS BELOW THIS LINE ---------------
    --USER generics added here
    -- ADD USER GENERICS ABOVE THIS LINE ---------------

    -- DO NOT EDIT BELOW THIS LINE ---------------------
    -- Bus protocol parameters, do not add to or delete
    C_S_AXI_DATA_WIDTH             : integer              := 32;
    C_S_AXI_ADDR_WIDTH             : integer              := 32;
    C_S_AXI_MIN_SIZE               : std_logic_vector     := X"000001FF";
    C_USE_WSTRB                    : integer              := 0;
    C_DPHASE_TIMEOUT               : integer              := 8;
    C_BASEADDR                     : std_logic_vector     := X"FFFFFFFF";
    C_HIGHADDR                     : std_logic_vector     := X"00000000";
    C_FAMILY                       : string               := "virtex6";
    C_NUM_REG                      : integer              := 1;
    C_NUM_MEM                      : integer              := 1;
    C_SLV_AWIDTH                   : integer              := 32;
    C_SLV_DWIDTH                   : integer              := 32
    -- DO NOT EDIT ABOVE THIS LINE ---------------------
  );
  port
  (
    -- ADD USER PORTS BELOW THIS LINE ------------------
    --USER ports added here
	led : OUT std_logic;
    -- ADD USER PORTS ABOVE THIS LINE ------------------

    -- DO NOT EDIT BELOW THIS LINE ---------------------
    -- Bus protocol ports, do not add to or delete
    S_AXI_ACLK                     : in  std_logic;
    S_AXI_ARESETN                  : in  std_logic;
    S_AXI_AWADDR                   : in  std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);
    S_AXI_AWVALID                  : in  std_logic;
    S_AXI_WDATA                    : in  std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
    S_AXI_WSTRB                    : in  std_logic_vector((C_S_AXI_DATA_WIDTH/8)-1 downto 0);
    S_AXI_WVALID                   : in  std_logic;
    S_AXI_BREADY                   : in  std_logic;
    S_AXI_ARADDR                   : in  std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);
    S_AXI_ARVALID                  : in  std_logic;
    S_AXI_RREADY                   : in  std_logic;
    S_AXI_ARREADY                  : out std_logic;
    S_AXI_RDATA                    : out std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
    S_AXI_RRESP                    : out std_logic_vector(1 downto 0);
    S_AXI_RVALID                   : out std_logic;
    S_AXI_WREADY                   : out std_logic;
    S_AXI_BRESP                    : out std_logic_vector(1 downto 0);
    S_AXI_BVALID                   : out std_logic;
    S_AXI_AWREADY                  : out std_logic
    -- DO NOT EDIT ABOVE THIS LINE ---------------------
  );

  attribute MAX_FANOUT : string;
  attribute SIGIS : string;
  attribute MAX_FANOUT of S_AXI_ACLK       : signal is "10000";
  attribute MAX_FANOUT of S_AXI_ARESETN       : signal is "10000";
  attribute SIGIS of S_AXI_ACLK       : signal is "Clk";
  attribute SIGIS of S_AXI_ARESETN       : signal is "Rst";
end entity rill_ip;

------------------------------------------------------------------------------
-- Architecture section
------------------------------------------------------------------------------

architecture IMP of rill_ip is

  constant USER_SLV_DWIDTH                : integer              := C_S_AXI_DATA_WIDTH;

  constant IPIF_SLV_DWIDTH                : integer              := C_S_AXI_DATA_WIDTH;

  constant ZERO_ADDR_PAD                  : std_logic_vector(0 to 31) := (others => '0');
  constant USER_SLV_BASEADDR              : std_logic_vector     := C_BASEADDR;
  constant USER_SLV_HIGHADDR              : std_logic_vector     := C_HIGHADDR;

  constant IPIF_ARD_ADDR_RANGE_ARRAY      : SLV64_ARRAY_TYPE     := 
    (
      ZERO_ADDR_PAD & USER_SLV_BASEADDR,  -- user logic slave space base address
      ZERO_ADDR_PAD & USER_SLV_HIGHADDR   -- user logic slave space high address
    );

  constant USER_SLV_NUM_REG               : integer              := 1;
  constant USER_NUM_REG                   : integer              := USER_SLV_NUM_REG;
  constant TOTAL_IPIF_CE                  : integer              := USER_NUM_REG;

  constant IPIF_ARD_NUM_CE_ARRAY          : INTEGER_ARRAY_TYPE   := 
    (
      0  => (USER_SLV_NUM_REG)            -- number of ce for user logic slave space
    );

  ------------------------------------------
  -- Index for CS/CE
  ------------------------------------------
  constant USER_SLV_CS_INDEX              : integer              := 0;
  constant USER_SLV_CE_INDEX              : integer              := calc_start_ce_index(IPIF_ARD_NUM_CE_ARRAY, USER_SLV_CS_INDEX);

  constant USER_CE_INDEX                  : integer              := USER_SLV_CE_INDEX;

  ------------------------------------------
  -- IP Interconnect (IPIC) signal declarations
  ------------------------------------------
  signal ipif_Bus2IP_Clk                : std_logic;
  signal ipif_Bus2IP_Resetn             : std_logic;
  signal ipif_Bus2IP_Addr               : std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);
  signal ipif_Bus2IP_RNW                : std_logic;
  signal ipif_Bus2IP_BE                 : std_logic_vector(IPIF_SLV_DWIDTH/8-1 downto 0);
  signal ipif_Bus2IP_CS                 : std_logic_vector((IPIF_ARD_ADDR_RANGE_ARRAY'LENGTH)/2-1 downto 0);
  signal ipif_Bus2IP_RdCE               : std_logic_vector(calc_num_ce(IPIF_ARD_NUM_CE_ARRAY)-1 downto 0);
  signal ipif_Bus2IP_WrCE               : std_logic_vector(calc_num_ce(IPIF_ARD_NUM_CE_ARRAY)-1 downto 0);
  signal ipif_Bus2IP_Data               : std_logic_vector(IPIF_SLV_DWIDTH-1 downto 0);
  signal ipif_IP2Bus_WrAck              : std_logic;
  signal ipif_IP2Bus_RdAck              : std_logic;
  signal ipif_IP2Bus_Error              : std_logic;
  signal ipif_IP2Bus_Data               : std_logic_vector(IPIF_SLV_DWIDTH-1 downto 0);
  signal user_Bus2IP_RdCE               : std_logic_vector(USER_NUM_REG-1 downto 0);
  signal user_Bus2IP_WrCE               : std_logic_vector(USER_NUM_REG-1 downto 0);
  signal user_IP2Bus_Data               : std_logic_vector(USER_SLV_DWIDTH-1 downto 0);
  signal user_IP2Bus_RdAck              : std_logic;
  signal user_IP2Bus_WrAck              : std_logic;
  signal user_IP2Bus_Error              : std_logic;

begin

  ------------------------------------------
  -- instantiate axi_lite_ipif
  ------------------------------------------
  AXI_LITE_IPIF_I : entity axi_lite_ipif_v1_01_a.axi_lite_ipif
    generic map
    (
      C_S_AXI_DATA_WIDTH             => IPIF_SLV_DWIDTH,
      C_S_AXI_ADDR_WIDTH             => C_S_AXI_ADDR_WIDTH,
      C_S_AXI_MIN_SIZE               => C_S_AXI_MIN_SIZE,
      C_USE_WSTRB                    => C_USE_WSTRB,
      C_DPHASE_TIMEOUT               => C_DPHASE_TIMEOUT,
      C_ARD_ADDR_RANGE_ARRAY         => IPIF_ARD_ADDR_RANGE_ARRAY,
      C_ARD_NUM_CE_ARRAY             => IPIF_ARD_NUM_CE_ARRAY,
      C_FAMILY                       => C_FAMILY
    )
    port map
    (
      S_AXI_ACLK                     => S_AXI_ACLK,
      S_AXI_ARESETN                  => S_AXI_ARESETN,
      S_AXI_AWADDR                   => S_AXI_AWADDR,
      S_AXI_AWVALID                  => S_AXI_AWVALID,
      S_AXI_WDATA                    => S_AXI_WDATA,
      S_AXI_WSTRB                    => S_AXI_WSTRB,
      S_AXI_WVALID                   => S_AXI_WVALID,
      S_AXI_BREADY                   => S_AXI_BREADY,
      S_AXI_ARADDR                   => S_AXI_ARADDR,
      S_AXI_ARVALID                  => S_AXI_ARVALID,
      S_AXI_RREADY                   => S_AXI_RREADY,
      S_AXI_ARREADY                  => S_AXI_ARREADY,
      S_AXI_RDATA                    => S_AXI_RDATA,
      S_AXI_RRESP                    => S_AXI_RRESP,
      S_AXI_RVALID                   => S_AXI_RVALID,
      S_AXI_WREADY                   => S_AXI_WREADY,
      S_AXI_BRESP                    => S_AXI_BRESP,
      S_AXI_BVALID                   => S_AXI_BVALID,
      S_AXI_AWREADY                  => S_AXI_AWREADY,
      Bus2IP_Clk                     => ipif_Bus2IP_Clk,
      Bus2IP_Resetn                  => ipif_Bus2IP_Resetn,
      Bus2IP_Addr                    => ipif_Bus2IP_Addr,
      Bus2IP_RNW                     => ipif_Bus2IP_RNW,
      Bus2IP_BE                      => ipif_Bus2IP_BE,
      Bus2IP_CS                      => ipif_Bus2IP_CS,
      Bus2IP_RdCE                    => ipif_Bus2IP_RdCE,
      Bus2IP_WrCE                    => ipif_Bus2IP_WrCE,
      Bus2IP_Data                    => ipif_Bus2IP_Data,
      IP2Bus_WrAck                   => ipif_IP2Bus_WrAck,
      IP2Bus_RdAck                   => ipif_IP2Bus_RdAck,
      IP2Bus_Error                   => ipif_IP2Bus_Error,
      IP2Bus_Data                    => ipif_IP2Bus_Data
    );

  ------------------------------------------
  -- instantiate User Logic
  ------------------------------------------
  USER_LOGIC_I : entity rill_ip_v1_00_a.user_logic
    generic map
    (
      -- MAP USER GENERICS BELOW THIS LINE ---------------
      --USER generics mapped here
      -- MAP USER GENERICS ABOVE THIS LINE ---------------

      C_NUM_REG                      => USER_NUM_REG,
      C_SLV_DWIDTH                   => USER_SLV_DWIDTH
    )
    port map
    (
      -- MAP USER PORTS BELOW THIS LINE ------------------
      --USER ports mapped here
	  led => led,
      -- MAP USER PORTS ABOVE THIS LINE ------------------

      Bus2IP_Clk                     => ipif_Bus2IP_Clk,
      Bus2IP_Resetn                  => ipif_Bus2IP_Resetn,
      Bus2IP_Data                    => ipif_Bus2IP_Data,
      Bus2IP_BE                      => ipif_Bus2IP_BE,
      Bus2IP_RdCE                    => user_Bus2IP_RdCE,
      Bus2IP_WrCE                    => user_Bus2IP_WrCE,
      IP2Bus_Data                    => user_IP2Bus_Data,
      IP2Bus_RdAck                   => user_IP2Bus_RdAck,
      IP2Bus_WrAck                   => user_IP2Bus_WrAck,
      IP2Bus_Error                   => user_IP2Bus_Error
    );

  ------------------------------------------
  -- connect internal signals
  ------------------------------------------
  ipif_IP2Bus_Data <= user_IP2Bus_Data;
  ipif_IP2Bus_WrAck <= user_IP2Bus_WrAck;
  ipif_IP2Bus_RdAck <= user_IP2Bus_RdAck;
  ipif_IP2Bus_Error <= user_IP2Bus_Error;

  user_Bus2IP_RdCE <= ipif_Bus2IP_RdCE(USER_NUM_REG-1 downto 0);
  user_Bus2IP_WrCE <= ipif_Bus2IP_WrCE(USER_NUM_REG-1 downto 0);

end IMP;

文件3:user_logic.vhd


------------------------------------------------------------------------------
-- user_logic.vhd - entity/architecture pair
------------------------------------------------------------------------------
--
-- ***************************************************************************
-- ** Copyright (c) 1995-2012 Xilinx, Inc.  All rights reserved.            **
-- **                                                                       **
-- ** Xilinx, Inc.                                                          **
-- ** XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"         **
-- ** AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND       **
-- ** SOLUTIONS FOR XILINX DEVICES.  BY PROVIDING THIS DESIGN, CODE,        **
-- ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,        **
-- ** APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION           **
-- ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,     **
-- ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE      **
-- ** FOR YOUR IMPLEMENTATION.  XILINX EXPRESSLY DISCLAIMS ANY              **
-- ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE               **
-- ** IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR        **
-- ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF       **
-- ** INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS       **
-- ** FOR A PARTICULAR PURPOSE.                                             **
-- **                                                                       **
-- ***************************************************************************
--
------------------------------------------------------------------------------
-- Filename:          user_logic.vhd
-- Version:           1.00.a
-- Description:       User logic.
-- Date:              Mon Nov 05 13:53:37 2012 (by Create and Import Peripheral Wizard)
-- VHDL Standard:     VHDL'93
------------------------------------------------------------------------------
-- Naming Conventions:
--   active low signals:                    "*_n"
--   clock signals:                         "clk", "clk_div#", "clk_#x"
--   reset signals:                         "rst", "rst_n"
--   generics:                              "C_*"
--   user defined types:                    "*_TYPE"
--   state machine next state:              "*_ns"
--   state machine current state:           "*_cs"
--   combinatorial signals:                 "*_com"
--   pipelined or register delay signals:   "*_d#"
--   counter signals:                       "*cnt*"
--   clock enable signals:                  "*_ce"
--   internal version of output port:       "*_i"
--   device pins:                           "*_pin"
--   ports:                                 "- Names begin with Uppercase"
--   processes:                             "*_PROCESS"
--   component instantiations:              "I_<#|FUNC>"
------------------------------------------------------------------------------

-- DO NOT EDIT BELOW THIS LINE --------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

library proc_common_v3_00_a;
use proc_common_v3_00_a.proc_common_pkg.all;

-- DO NOT EDIT ABOVE THIS LINE --------------------

--USER libraries added here

------------------------------------------------------------------------------
-- Entity section
------------------------------------------------------------------------------
-- Definition of Generics:
--   C_NUM_REG                    -- Number of software accessible registers
--   C_SLV_DWIDTH                 -- Slave interface data bus width
--
-- Definition of Ports:
--   Bus2IP_Clk                   -- Bus to IP clock
--   Bus2IP_Resetn                -- Bus to IP reset
--   Bus2IP_Data                  -- Bus to IP data bus
--   Bus2IP_BE                    -- Bus to IP byte enables
--   Bus2IP_RdCE                  -- Bus to IP read chip enable
--   Bus2IP_WrCE                  -- Bus to IP write chip enable
--   IP2Bus_Data                  -- IP to Bus data bus
--   IP2Bus_RdAck                 -- IP to Bus read transfer acknowledgement
--   IP2Bus_WrAck                 -- IP to Bus write transfer acknowledgement
--   IP2Bus_Error                 -- IP to Bus error response
------------------------------------------------------------------------------

entity user_logic is
  generic
  (
    -- ADD USER GENERICS BELOW THIS LINE ---------------
    --USER generics added here
    -- ADD USER GENERICS ABOVE THIS LINE ---------------

    -- DO NOT EDIT BELOW THIS LINE ---------------------
    -- Bus protocol parameters, do not add to or delete
    C_NUM_REG                      : integer              := 1;
    C_SLV_DWIDTH                   : integer              := 32
    -- DO NOT EDIT ABOVE THIS LINE ---------------------
  );
  port
  (
    -- ADD USER PORTS BELOW THIS LINE ------------------
    --USER ports added here
	led : out std_logic;
    -- ADD USER PORTS ABOVE THIS LINE ------------------

    -- DO NOT EDIT BELOW THIS LINE ---------------------
    -- Bus protocol ports, do not add to or delete
    Bus2IP_Clk                     : in  std_logic;
    Bus2IP_Resetn                  : in  std_logic;
    Bus2IP_Data                    : in  std_logic_vector(C_SLV_DWIDTH-1 downto 0);
    Bus2IP_BE                      : in  std_logic_vector(C_SLV_DWIDTH/8-1 downto 0);
    Bus2IP_RdCE                    : in  std_logic_vector(C_NUM_REG-1 downto 0);
    Bus2IP_WrCE                    : in  std_logic_vector(C_NUM_REG-1 downto 0);
    IP2Bus_Data                    : out std_logic_vector(C_SLV_DWIDTH-1 downto 0);
    IP2Bus_RdAck                   : out std_logic;
    IP2Bus_WrAck                   : out std_logic;
    IP2Bus_Error                   : out std_logic
    -- DO NOT EDIT ABOVE THIS LINE ---------------------
  );

  attribute MAX_FANOUT : string;
  attribute SIGIS : string;

  attribute SIGIS of Bus2IP_Clk    : signal is "CLK";
  attribute SIGIS of Bus2IP_Resetn : signal is "RST";

end entity user_logic;

------------------------------------------------------------------------------
-- Architecture section
------------------------------------------------------------------------------

architecture IMP of user_logic is

  --USER signal declarations added here, as needed for user logic
  signal led_i : std_logic;
  ------------------------------------------
  -- Signals for user logic slave model s/w accessible register example
  ------------------------------------------
  signal slv_reg0                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0);
  signal slv_reg_write_sel              : std_logic_vector(0 to 0);
  signal slv_reg_read_sel               : std_logic_vector(0 to 0);
  signal slv_ip2bus_data                : std_logic_vector(C_SLV_DWIDTH-1 downto 0);
  signal slv_read_ack                   : std_logic;
  signal slv_write_ack                  : std_logic;

begin

  --USER logic implementation added here
  led_PROC : process (Bus2IP_Clk) is
  begin
	if Bus2IP_WrCE(0) = '1' then
		led_i <= '1';
	else
		led_i <= '0';
	end if;
  end process led_PROC;
  led <= led_i;
  ------------------------------------------
  -- Example code to read/write user logic slave model s/w accessible registers
  -- 
  -- Note:
  -- The example code presented here is to show you one way of reading/writing
  -- software accessible registers implemented in the user logic slave model.
  -- Each bit of the Bus2IP_WrCE/Bus2IP_RdCE signals is configured to correspond
  -- to one software accessible register by the top level template. For example,
  -- if you have four 32 bit software accessible registers in the user logic,
  -- you are basically operating on the following memory mapped registers:
  -- 
  --    Bus2IP_WrCE/Bus2IP_RdCE   Memory Mapped Register
  --                     "1000"   C_BASEADDR + 0x0
  --                     "0100"   C_BASEADDR + 0x4
  --                     "0010"   C_BASEADDR + 0x8
  --                     "0001"   C_BASEADDR + 0xC
  -- 
  ------------------------------------------
  slv_reg_write_sel <= Bus2IP_WrCE(0 downto 0);
  slv_reg_read_sel  <= Bus2IP_RdCE(0 downto 0);
  slv_write_ack     <= Bus2IP_WrCE(0);
  slv_read_ack      <= Bus2IP_RdCE(0);

  -- implement slave model software accessible register(s)
  SLAVE_REG_WRITE_PROC : process( Bus2IP_Clk ) is
  begin

    if Bus2IP_Clk'event and Bus2IP_Clk = '1' then
      if Bus2IP_Resetn = '0' then
        slv_reg0 <= (others => '0');
      else
        case slv_reg_write_sel is
          when "1" =>
            for byte_index in 0 to (C_SLV_DWIDTH/8)-1 loop
              if ( Bus2IP_BE(byte_index) = '1' ) then
                slv_reg0(byte_index*8+7 downto byte_index*8) <= Bus2IP_Data(byte_index*8+7 downto byte_index*8);
              end if;
            end loop;
          when others => null;
        end case;
      end if;
    end if;

  end process SLAVE_REG_WRITE_PROC;

  -- implement slave model software accessible register(s) read mux
  SLAVE_REG_READ_PROC : process( slv_reg_read_sel, slv_reg0 ) is
  begin

    case slv_reg_read_sel is
      when "1" => slv_ip2bus_data <= slv_reg0;
      when others => slv_ip2bus_data <= (others => '0');
    end case;

  end process SLAVE_REG_READ_PROC;

  ------------------------------------------
  -- Example code to drive IP to Bus signals
  ------------------------------------------
  IP2Bus_Data  <= slv_ip2bus_data when slv_read_ack = '1' else
                  (others => '0');

  IP2Bus_WrAck <= slv_write_ack;
  IP2Bus_RdAck <= slv_read_ack;
  IP2Bus_Error <= '0';

end IMP;


文件4:UCF文件

NET rill_ip_0_led_pin IOSTANDARD=LVCMOS25 | LOC=V7;

文件5:SDK编码

/*
 * Copyright (c) 2009 Xilinx, Inc.  All rights reserved.
 *
 * Xilinx, Inc.
 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A
 * COURTESY TO YOU.  BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS
 * ONE POSSIBLE   IMPLEMENTATION OF THIS FEATURE, APPLICATION OR
 * STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION
 * IS FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE
 * FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION.
 * XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO
 * THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO
 * ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE
 * FROM CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY
 * AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 */

/*
 * helloworld.c: simple test application
 */

#include 
#include "platform.h"

#include "../../hello_world_bsp_0/ps7_cortexa9_0/include/xgpiops_hw.h"
#include "../../hello_world_bsp_0/ps7_cortexa9_0/include/xparameters.h"
#define LED_BASE_ADDR XPAR_RILL_IP_0_BASEADDR

void my_process(void);

int main()
{
    init_platform();

    my_process();

    cleanup_platform();

    return 0;
}

void my_process(void)
{
	int ret = 0;

	printf("my_process start...");

	ret = XGpioPs_ReadReg(LED_BASE_ADDR, 0);
	printf("read0 :%d\n\n",ret);

	XGpioPs_WriteReg(LED_BASE_ADDR, 0, 0);
	ret = XGpioPs_ReadReg(LED_BASE_ADDR, 0);
	printf("read1 :%d\n\n",ret);

	XGpioPs_WriteReg(LED_BASE_ADDR, 0, 1);
	ret = XGpioPs_ReadReg(LED_BASE_ADDR, 0);
	printf("read2 :%d\n\n",ret);

}

/************ EOF *************/

总结

这三个实验包含了高端FPGA的主要的三种开发方式。也是典型的使用方式。这三个小实验搞明白了的话,就算入门了吧。

再进一步的话,只不过是逻辑复杂些,代码量多一些。这就需要其他方面的知识和技能了。

你可能感兴趣的:(FPGA/HDL)