OpenVINO之六:转换MXNet模型

1

2 OpenVINO支持的MXNet模型

2-1 Classification models:

  • VGG-16 VGG-19
  • ResNet-152 v1
  • SqueezeNet_v1.1
  • Inception BN
  • CaffeNet
  • DenseNet-121 DenseNet-161 DenseNet-169 DenseNet-201
  • MobileNet

2-2 Object detection models:

  • SSD-ResNet-50
  • SSD-VGG-16-300
  • SSD-Inception v3

2-3 Semantic Segmentation models:

  • FCN8

2-4 Face Detection models:

  • MTCNN P-Net MTCNN N-Net MTCNN O-Net MTCNN R-Net

Lightened_moon
RNN-Transducer Repo
word_lm Repo

3 OpenVINO支持的MXNet层与其在Intermediate Representation (IR)中的对应关系

NUMBER SYMBOL NAME IN MXNET* LAYER NAME IN THE INTERMEDIATE REPRESENTATION
1 BatchNorm BatchNormalization
2 Crop Crop
3 ScaleShift ScaleShift
4 Pooling Pooling
5 SoftmaxOutput SoftMax
6 SoftmaxActivation SoftMax
7 null Ignored, does not appear in IR
8 Convolution Convolution
9 Deconvolution Deconvolution
10 Activation(act_type = relu) ReLU
11 ReLU ReLU
12 LeakyReLU ReLU (negative_slope = 0.25)
13 Concat Concat
14 elemwise_add Eltwise(operation = sum)
15 _Plus Eltwise(operation = sum)
16 Flatten Flatten
17 Reshape Reshape
18 FullyConnected FullyConnected
19 UpSampling Resample
20 transpose Permute
21 LRN Norm
22 L2Normalization Normalize
23 Dropout Ignored, does not appear in IR
24 _copy Ignored, does not appear in IR
25 _contrib_MultiBoxPrior PriorBox
26 _contrib_MultiBoxDetection DetectionOutput
27 broadcast_mul ScaleShift
28 sigmoid sigmoid
29 Activation (act_type = tanh) Activation (operation = tanh)
30 LeakyReLU (act_type = prelu) PReLU
31 LeakyReLU (act_type = elu) Activation (operation = elu)
32 elemwise_mul Eltwise (operation = mul)
33 add_n Eltwise (operation = sum)
34 ElementWiseSum Eltwise (operation = sum)
35 _mul_scalar Power
36 broadcast_add Eltwise (operation = sum)
37 slice_axis Crop
38 Custom Custom Layers in the Model Optimizer
39 _minus_scalar Power
40 Pad Pad
41 _contrib_Proposal Proposal
42 ROIPooling ROIPooling
43 stack Concat
44 swapaxis Permute
45 zeros Const
45 rnn TensorIterator
46 rnn_param_concat Concat
47 slice_channel Split
48 _maximum Eltwise(operation = max)
49 _minimum Power(scale=-1) + Eltwise(operation = max) + Power(scale=-1)
50 InstanceNorm scale * (x - mean) / sqrt(variance + epsilon) + B
51 Embedding Gather

参考资料:
1 Converting a MXNet* Model
2 Supported Framework Layers

你可能感兴趣的:(OpenVINO)