各个类型candidate的搜集过程

1、candidate的收集整体调用逻辑

先看整体的调用逻辑,再看各个类型candidate的收集过程

各个类型candidate的搜集过程_第1张图片
connection的建立及相关处理.jpg

看关键的方法AllocationSequence::Init,这里会分配本地的udp端口

bool AllocationSequence::Init() {
  if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
    udp_socket_.reset(session_->socket_factory()->CreateUdpSocket(
        rtc::SocketAddress(ip_, 0), session_->allocator()->min_port(),
        session_->allocator()->max_port()));
    if (udp_socket_) {
      udp_socket_->SignalReadPacket.connect(
          this, &AllocationSequence::OnReadPacket);
    }
    // Continuing if |udp_socket_| is NULL, as local TCP and RelayPort using TCP
    // are next available options to setup a communication channel.
  }
  return true;
}

这个方法一直跟下去会发现bind时的方法是

int Win32Socket::Bind(const SocketAddress& addr) {
  ASSERT(socket_ != INVALID_SOCKET);
  if (socket_ == INVALID_SOCKET)
    return SOCKET_ERROR;

  sockaddr_storage saddr;
  size_t len = addr.ToSockAddrStorage(&saddr);
  int err = ::bind(socket_,
                   reinterpret_cast(&saddr),
                   static_cast(len));
  UpdateLastError();
  return err;
}

其中的端口为0,也就是说要绑定的端口由操作系统随机选择

下面来看其中关键的方法2 BasicPortAllocatorSession::DoAllocate

//basicportallocator.cc 341L
void BasicPortAllocatorSession::DoAllocate() {
  bool done_signal_needed = false;
  std::vector networks;
  GetNetworks(&networks);

  if (networks.empty()) {
    LOG(LS_WARNING) << "Machine has no networks; no ports will be allocated";
    done_signal_needed = true;
  } else {
    for (uint32_t i = 0; i < networks.size(); ++i) {
      PortConfiguration* config = NULL;
      if (configs_.size() > 0)
        config = configs_.back();

      uint32_t sequence_flags = flags();
      if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) {
        // If all the ports are disabled we should just fire the allocation
        // done event and return.
        done_signal_needed = true;
        break;
      }

      if (!config || config->relays.empty()) {
        // No relay ports specified in this config.
        sequence_flags |= PORTALLOCATOR_DISABLE_RELAY;
      }

      if (!(sequence_flags & PORTALLOCATOR_ENABLE_IPV6) &&
          networks[i]->GetBestIP().family() == AF_INET6) {
        // Skip IPv6 networks unless the flag's been set.
        continue;
      }

      // Disable phases that would only create ports equivalent to
      // ones that we have already made.
      DisableEquivalentPhases(networks[i], config, &sequence_flags);

      if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) {
        // New AllocationSequence would have nothing to do, so don't make it.
        continue;
      }

      AllocationSequence* sequence =
          new AllocationSequence(this, networks[i], config, sequence_flags);
      if (!sequence->Init()) {
        delete sequence;
        continue;
      }
      done_signal_needed = true;
      sequence->SignalPortAllocationComplete.connect(
          this, &BasicPortAllocatorSession::OnPortAllocationComplete);
      if (running_)
        sequence->Start(); //开始建立port,然后开始搜集candidate
      sequences_.push_back(sequence);
    }
  }
  if (done_signal_needed) {
    network_thread_->Post(this, MSG_SEQUENCEOBJECTS_CREATED);
  }
}

AllocationSequence::AllocationSequence(BasicPortAllocatorSession* session,
                                       rtc::Network* network,
                                       PortConfiguration* config,
                                       uint32_t flags)
    : session_(session),
      network_(network),
      ip_(network->GetBestIP()),
      config_(config),
      state_(kInit),
      flags_(flags),
      udp_socket_(),
      udp_port_(NULL),
      phase_(0) {
}

bool AllocationSequence::Init() {
  if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
    udp_socket_.reset(session_->socket_factory()->CreateUdpSocket(
        rtc::SocketAddress(ip_, 0), session_->allocator()->min_port(),
        session_->allocator()->max_port()));
    if (udp_socket_) {
      udp_socket_->SignalReadPacket.connect(
          this, &AllocationSequence::OnReadPacket);
    }
    // Continuing if |udp_socket_| is NULL, as local TCP and RelayPort using TCP
    // are next available options to setup a communication channel.
  }
  return true;
}

可以看出:
(1)一个网络(比如)会建立一个AllocationSequence
(2)AllocationSequence对应这个网络的best ip
(3)一个AllocationSequence建立一套port(sequence->Start() 开始建立port,然后开始搜集candidate)
(4)经过测试IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)为true,所以udp port是复用的

2、candidate的最终合成方法

首先看一下最终生成candidate的方法

//port.cc 230L
void Port::AddAddress(const rtc::SocketAddress& address,
                      const rtc::SocketAddress& base_address,
                      const rtc::SocketAddress& related_address,
                      const std::string& protocol,
                      const std::string& relay_protocol,
                      const std::string& tcptype,
                      const std::string& type,
                      uint32_t type_preference,
                      uint32_t relay_preference,
                      bool final) {
  if (protocol == TCP_PROTOCOL_NAME && type == LOCAL_PORT_TYPE) {
    ASSERT(!tcptype.empty());
  }

  std::string foundation =
      ComputeFoundation(type, protocol, relay_protocol, base_address);
  Candidate c(component_, protocol, address, 0U, username_fragment(), password_,
              type, generation_, foundation, network_->id(), network_cost_);
  c.set_priority(
      c.GetPriority(type_preference, network_->preference(), relay_preference));
  c.set_relay_protocol(relay_protocol);
  c.set_tcptype(tcptype);
  c.set_network_name(network_->name());
  c.set_network_type(network_->type());
  c.set_related_address(related_address);
  candidates_.push_back(c);
  SignalCandidateReady(this, c);

  if (final) {
    SignalPortComplete(this);
  }
}

candidate的结构

candidate:499412426 1 udp 2122260223 192.168.0.136 54135 typ host generation 0 ufrag KQbng0ClMLl6gk2B network-id 3

  //candidate:   
  //   typ 
  // [raddr ] [rport ]
  // *(SP extension-att-name SP extension-att-value)

对应AddAddress方法跟candidate的结构,来看candidate中各个元素的计算

foundation的计算

// Foundation:  An arbitrary string that is the same for two candidates
//   that have the same type, base IP address, protocol (UDP, TCP,
//   etc.), and STUN or TURN server.  If any of these are different,
//   then the foundation will be different.  Two candidate pairs with
//   the same foundation pairs are likely to have similar network
//   characteristics.  Foundations are used in the frozen algorithm.
static std::string ComputeFoundation(const std::string& type,
                                     const std::string& protocol,
                                     const std::string& relay_protocol,
                                     const rtc::SocketAddress& base_address) {
  std::ostringstream ost;
  ost << type << base_address.ipaddr().ToString() << protocol << relay_protocol;
  return rtc::ToString(rtc::ComputeCrc32(ost.str()));
}

就是将type,protocol,relay_protocol,base_address等合并在一起,计算一个Crc32校验值

component_

 component_(ICE_CANDIDATE_COMPONENT_DEFAULT) //port的构造函数中,port.cc 145L ICE_CANDIDATE_COMPONENT_DEFAULT = 1

//component_ 最初被传入的位置位于BaseChannel::SetTransport_w(channel.cc 249L 跟 258行中)
cricket::ICE_CANDIDATE_COMPONENT_RTP  1
cricket::ICE_CANDIDATE_COMPONENT_RTCP  2

generation_

最初设置于 P2PTransportChannel::AddAllocatorSession(P2PTransportChannel 275L)

session->set_generation(static_cast(allocator_sessions_.size()));

大部分情况下为0

network_cost_

跟当前网络类型有关

network_cost_ =  (network_->type() == rtc::ADAPTER_TYPE_CELLULAR) ? kMaxNetworkCost : 0;

//网络类型
enum AdapterType {
  // This enum resembles the one in Chromium net::ConnectionType.
  ADAPTER_TYPE_UNKNOWN = 0,
  ADAPTER_TYPE_ETHERNET = 1 << 0,
  ADAPTER_TYPE_WIFI = 1 << 1,
  ADAPTER_TYPE_CELLULAR = 1 << 2,
  ADAPTER_TYPE_VPN = 1 << 3,
  ADAPTER_TYPE_LOOPBACK = 1 << 4
};

priority的计算

//candidate.h 239
uint32_t GetPriority(uint32_t type_preference,
                       int network_adapter_preference,
                       int relay_preference) const {
    // RFC 5245 - 4.1.2.1.
    // priority = (2^24)*(type preference) +
    //            (2^8)*(local preference) +
    //            (2^0)*(256 - component ID)

    // |local_preference| length is 2 bytes, 0-65535 inclusive.
    // In our implemenation we will partion local_preference into
    //              0                 1
    //       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
    //      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //      |  NIC Pref     |    Addr Pref  |
    //      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    // NIC Type - Type of the network adapter e.g. 3G/Wifi/Wired.
    // Addr Pref - Address preference value as per RFC 3484.
    // local preference =  (NIC Type << 8 | Addr_Pref) - relay preference.

    int addr_pref = IPAddressPrecedence(address_.ipaddr());
    int local_preference = ((network_adapter_preference << 8) | addr_pref) +
        relay_preference;

    return (type_preference << 24) |
           (local_preference << 8) |
           (256 - component_);
  }

先看各个变量的具体含义
type_preference 各个地址类型的偏好
具体赋值是

//port.h 83L,在各个port调用AddAddress时传参
enum IcePriorityValue {
  // The reason we are choosing Relay preference 2 is because, we can run
  // Relay from client to server on UDP/TCP/TLS. To distinguish the transport
  // protocol, we prefer UDP over TCP over TLS.
  // For UDP ICE_TYPE_PREFERENCE_RELAY will be 2.
  // For TCP ICE_TYPE_PREFERENCE_RELAY will be 1.
  // For TLS ICE_TYPE_PREFERENCE_RELAY will be 0.
  // Check turnport.cc for setting these values.
  ICE_TYPE_PREFERENCE_RELAY = 2,
  ICE_TYPE_PREFERENCE_HOST_TCP = 90,
  ICE_TYPE_PREFERENCE_SRFLX = 100,
  ICE_TYPE_PREFERENCE_PRFLX = 110,
  ICE_TYPE_PREFERENCE_HOST = 126
};

NIC Type 网卡类型的偏好,在network.cc 335L设置,代码如下

 std::sort(networks_.begin(), networks_.end(), SortNetworks);
    // Now network interfaces are sorted, we should set the preference value
    // for each of the interfaces we are planning to use.
    // Preference order of network interfaces might have changed from previous
    // sorting due to addition of higher preference network interface.
    // Since we have already sorted the network interfaces based on our
    // requirements, we will just assign a preference value starting with 127,
    // in decreasing order.
    int pref = kHighestNetworkPreference;
    for (Network* network : networks_) {
      network->set_preference(pref);

addr_pref ip类型的Preference

//ipaddress.cc 482L
int IPAddressPrecedence(const IPAddress& ip) {
  // Precedence values from RFC 3484-bis. Prefers native v4 over 6to4/Teredo.
  if (ip.family() == AF_INET) {
    return 30;
  } else if (ip.family() == AF_INET6) {
    if (IPIsLoopback(ip)) {
      return 60;
    } else if (IPIsULA(ip)) {
      return 50;
    } else if (IPIsV4Mapped(ip)) {
      return 30;
    } else if (IPIs6To4(ip)) {
      return 20;
    } else if (IPIsTeredo(ip)) {
      return 10;
    } else if (IPIsV4Compatibility(ip) || IPIsSiteLocal(ip) || IPIs6Bone(ip)) {
      return 1;
    } else {
      // A 'normal' IPv6 address.
      return 40;
    }
  }
  return 0;
}

relay_preference
只在TurnPort::OnAllocateSuccess对AddAddress调用时(turnport.cc 712L)设置了值,其他的调用都为0

从代码:

int addr_pref = IPAddressPrecedence(address_.ipaddr());
    int local_preference = ((network_adapter_preference << 8) | addr_pref) +
        relay_preference;

    return (type_preference << 24) |
           (local_preference << 8) |
           (256 - component_);

可以看出,优先级值的组成在比较时起的作用是:
1.先比较ice类型,如是host,srflx还是relay之类
2.比较网络类型,如以太网,wifi之类
3.比较ip地址类型,如是本地回环地址之类

搜集host跟srflx的candidate共用的方法

stunport.cc 251L
void UDPPort::PrepareAddress() {
  ASSERT(requests_.empty());
  if (socket_->GetState() == rtc::AsyncPacketSocket::STATE_BOUND) {
    OnLocalAddressReady(socket_, socket_->GetLocalAddress());
  }
}

void UDPPort::OnLocalAddressReady(rtc::AsyncPacketSocket* socket,
                                  const rtc::SocketAddress& address) {
  // When adapter enumeration is disabled and binding to the any address, the
  // default local address will be issued as a candidate instead if
  // |emit_local_for_anyaddress| is true. This is to allow connectivity for
  // applications which absolutely requires a HOST candidate.
  rtc::SocketAddress addr = address;

  // If MaybeSetDefaultLocalAddress fails, we keep the "any" IP so that at
  // least the port is listening.
  MaybeSetDefaultLocalAddress(&addr);

  AddAddress(addr, addr, rtc::SocketAddress(), UDP_PROTOCOL_NAME, "", "",
             LOCAL_PORT_TYPE, ICE_TYPE_PREFERENCE_HOST, 0, false);
  MaybePrepareStunCandidate();
}

void UDPPort::MaybePrepareStunCandidate() {
  // Sending binding request to the STUN server if address is available to
  // prepare STUN candidate.
  if (!server_addresses_.empty()) {
    SendStunBindingRequests();
  } else {
    // Port is done allocating candidates.
    MaybeSetPortCompleteOrError();
  }
}

各个port的类关系如下图

各个类型candidate的搜集过程_第2张图片
port的类图.png

3、host

AllocationSequence::createUDPPorts

也就是udpport,搜集本地地址,此时MaybePrepareStunCandidate被调用时,udpport的server_addresses_为空,不会发送bindingrequest

4、srflx

AllocationSequence::CreateStunPorts

stunport继承了udpport,搜集反射地址时,MaybePrepareStunCandidate被调用时,server_addresses_为stun服务器的地址,发送bindingrequest

5、relay

void AllocationSequence::CreateRelayPorts() {
  if (IsFlagSet(PORTALLOCATOR_DISABLE_RELAY)) {
     LOG(LS_VERBOSE) << "AllocationSequence: Relay ports disabled, skipping.";
     return;
  }

  // If BasicPortAllocatorSession::OnAllocate left relay ports enabled then we
  // ought to have a relay list for them here.
  ASSERT(config_ && !config_->relays.empty());
  if (!(config_ && !config_->relays.empty())) {
    LOG(LS_WARNING)
        << "AllocationSequence: No relay server configured, skipping.";
    return;
  }

  PortConfiguration::RelayList::const_iterator relay;
  for (relay = config_->relays.begin();
       relay != config_->relays.end(); ++relay) {
    if (relay->type == RELAY_GTURN) {
      CreateGturnPort(*relay);
    } else if (relay->type == RELAY_TURN) {
      CreateTurnPort(*relay);
    } else {
      ASSERT(false);
    }
  }
}
  • 在该方法中如果turn服务器配置的是google的传统中继服务器将调用
    CreateGturnPort(*relay);
    生成relayport,此relayport的分析从略

  • 如果不是则调用CreateTurnPort(*relay);
    生成turnport
    turnport的PrepareAddress方法代码如下:

void TurnPort::PrepareAddress() {
  if (credentials_.username.empty() ||
      credentials_.password.empty()) {
    LOG(LS_ERROR) << "Allocation can't be started without setting the"
                  << " TURN server credentials for the user.";
    OnAllocateError();
    return;
  }

  if (!server_address_.address.port()) {
    // We will set default TURN port, if no port is set in the address.
    server_address_.address.SetPort(TURN_DEFAULT_PORT);
  }

  if (server_address_.address.IsUnresolvedIP()) {
    ResolveTurnAddress(server_address_.address);
  } else {
    // If protocol family of server address doesn't match with local, return.
    if (!IsCompatibleAddress(server_address_.address)) {
      LOG(LS_ERROR) << "IP address family does not match: "
                    << "server: " << server_address_.address.family()
                    << "local: " << ip().family();
      OnAllocateError();
      return;
    }

    // Insert the current address to prevent redirection pingpong.
    attempted_server_addresses_.insert(server_address_.address);
    LOG_J(LS_INFO, this) << "Trying to connect to TURN server via "
                         << ProtoToString(server_address_.proto) << " @ "
                         << server_address_.address.ToSensitiveString();
    if (!CreateTurnClientSocket()) {
      LOG(LS_ERROR) << "Failed to create TURN client socket";
      OnAllocateError();
      return;
    }
    if (server_address_.proto == PROTO_UDP) {
      // If its UDP, send AllocateRequest now.
      // For TCP and TLS AllcateRequest will be sent by OnSocketConnect.
      SendRequest(new TurnAllocateRequest(this), 0);
    }
  }
}

发送TurnAllocateRequest请求,也就是allocate请求

6、host tcptype

tcpport的建立

static TCPPort* Create(rtc::Thread* thread,
                         rtc::PacketSocketFactory* factory,
                         rtc::Network* network,
                         const rtc::IPAddress& ip,
                         uint16_t min_port,
                         uint16_t max_port,
                         const std::string& username,
                         const std::string& password,
                         bool allow_listen) {
    TCPPort* port = new TCPPort(thread, factory, network, ip, min_port,
                                max_port, username, password, allow_listen);
    if (!port->Init()) {
      delete port;
      port = NULL;
    }
    return port;
  }

bool TCPPort::Init() {
  if (allow_listen_) {
    // Treat failure to create or bind a TCP socket as fatal.  This
    // should never happen.
    socket_ = socket_factory()->CreateServerTcpSocket(
        rtc::SocketAddress(ip(), 0), min_port(), max_port(),
        false /* ssl */);
    if (!socket_) {
      LOG_J(LS_ERROR, this) << "TCP socket creation failed.";
      return false;
    }
    socket_->SignalNewConnection.connect(this, &TCPPort::OnNewConnection);
    socket_->SignalAddressReady.connect(this, &TCPPort::OnAddressReady);
  }
  return true;
}

在该段代码中,min_port max_port都为0,所以tcp的端口也是相同随机选择的

你可能感兴趣的:(各个类型candidate的搜集过程)