ARM Linux驱动篇 学习温度传感器ds18b20的驱动编写过程

ARM Linux驱动篇 学习温度传感器ds18b20的驱动编写过程

原文地址:http://www.cnblogs.com/NickQ/p/9026545.html

一、开发板与ds18b20的入门

ds18B20是常用的数字温度传感器,具有体积小,硬件开销低,抗干扰能力强,精度高的特点。但楼主在使用过程中发现,ds18b20测量的温度还是需要进行一定的软件校准的。后面我们会谈论到。

除了上面提到的,ds18b20还有很多可圈可点的有点。下面说楼主所关注到的几个。

  1. 单总线协议,称为总线,必然可以挂载很多设备,但却只占用一个IO口。这对于缺乏IO资源的设备来说,就像是救命稻草。
  2. 可以由用户自己权衡测量精度和测量时间。根据Datasheet,18B20控制寄存器有两位是用来控制精度和测量时间的。如下图。
    下图表明:用户可以在精度9bit-12bit中,自由切换,这也对应着93.75ms,187.5ms,375ms,750ms四个最大测量时间。也就是说9bit精度意味着,最大测量时间最有93.75ms(对于缓慢变化的温度来说,这已经很快了),但只可以精确到0.25摄氏度。12bit精度意味着,虽然最大测量时间有750ms,但精度却能达到0.0625(750ms对于温度测量不能算很慢,但换来的这个精度却是不低的)。
  3. 可以使用寄生电源供电。这也是这个芯片突出的地方。这意味着可以不连接电源线,也为PCB布板,多设备走线省去了很多方便。

二、开发板的硬件电路和寄存器

楼主这里使用的是飞凌2440开发板,做学习之用。
电路连接图如下

这个板子上是接了电源和外部上拉。事实上这个电源可以由寄生电源,即由信号线DQ上的外部上拉提供。
图中,也可以看出信号线DQ是连接在了GPG0口。

寄存器说明图
寄存器物理地址:

寄存器配置说明
GPGCON-GPG0

GPGDAT AND GPGUP

三、 驱动实现

#include    /* Every Linux kernel module must include this head */
#include      /* Every Linux kernel module must include this head */
#include    /* printk() */
#include        /* struct fops */
#include     /* error codes */
#include      /* cdev_alloc()  */
#include          /* ioremap()  */
#include    /* request_mem_region() */
#include      
#include       
#include      
#include      
#include      
#include      
#include      
#include     

//定义驱动模块信息
//模块作者和描述
#define DRV_AUTHOR                "Nick "
#define DRV_DESC                  "S3C24XX 18B20 driver"

//模块名
#define DEV_NAME                  "s3c18b20"

//模块版本信息(只作用于安装和卸载的打印信息中)
#define DRV_MAJOR_VER             1
#define DRV_MINOR_VER             0
#define DRV_REVER_VER             0


//定义GPG口的寄存器地址,注意偏移地址在程序中的使用
#define S3C_GPG_BASE              0x56000060           //寄存器物理地址基地址
#define GPGCON_OFFSET             0
#define GPGDAT_OFFSET             4
#define GPGUP_OFFSET              8
#define S3C_GPG_LEN               0x10   /* 0x56000060~0x56000070  */ //此处定义的大小包括了四个寄存器地址空间,即4*4字节(包括保留的寄存器地址)

//定义ds18b20 DQ线对应的端口的GPIO编号。例如:GPG0 GPIO编号为0
#define GPIO_NUM_18B20            0      //18B20 PORT is PG0 

//定义函数操作的参数
//GPIO_Mode 
#define GPIO_MODE_INPUT           0x00
#define GPIO_MODE_OUTPUT          0x01
#define GPIO_MODE_EINT            0x10

//GPIO_STATUS
#define GPIO_STATUS_LOW           0
#define GPIO_STATUS_HIGH          1

//GPIO_PULLUP
#define GPIO_PULLUP_ENABLE        0
#define GPIO_PULLUP_DISABLE       1

#define DISABLE                   0
#define ENABLE                    1

//定义函数宏
#define s3c_gpio_read(reg)      __raw_readl((reg)+s3c_gpg_membase)
#define s3c_gpio_write(val,reg) __raw_writel((val),(reg)+s3c_gpg_membase)

//设置GPIO模式 参数:操作寄存器的偏移地址、GPIO编号、设置的状态(取值应为上述的宏)
#define s3c_18b20_gpio_mode(gpio_mode)       s3c2440_gpio_cfgpin_mode(GPGCON_OFFSET,GPIO_NUM_18B20, gpio_mode)
#define s3c_18b20_gpio_setsta(gpio_status)   s3c2440_gpio_cfgpin_status(GPGDAT_OFFSET,GPIO_NUM_18B20, gpio_status)
#define s3c_18b20_gpio_getsta()              s3c2440_gpio_getpin_status(GPGDAT_OFFSET,GPIO_NUM_18B20)
#define s3c_18b20_gpio_pullup(gpio_pullup)   s3c2440_gpio_cfgpin_pullup(GPGUP_OFFSET,GPIO_NUM_18B20, gpio_pullup)

//全局变量的定义
//设备数量、主设备好、次设备号(此处主设备号可由静态给定,只要不为0即可。若主设备号为0,则动态申请)
int dev_count = 1;
int dev_major = 0;
int dev_minor = 0;

int debug = DISABLE;

//定义存储 映射的虚拟地址空间地址的起始地址 变量
static void __iomem   *s3c_gpg_membase;
static struct cdev    *s3c_18b20_cdev;

//设置GPIO模式,此函数由上述的带参数宏调用
static int s3c2440_gpio_cfgpin_mode(unsigned long gpio_addr,unsigned char gpio_num, unsigned char gpio_mode)
{
    volatile unsigned long  gpg_con;
    
    if((GPIO_MODE_INPUT != gpio_mode) && (GPIO_MODE_OUTPUT != gpio_mode) && (GPIO_MODE_EINT != gpio_mode))
    {
        return -1;
    }
    
    /* Set GPxCON register, set correspond GPIO port as input or output mode  */
    gpg_con =  s3c_gpio_read(gpio_addr);  //此处的gpio_addr是偏移地址,调用此宏后会根据s3c_gpg_membase转换为绝对虚拟地址
    gpg_con &= ~(0x3<<(2*gpio_num));      /* Clear the currespond GPIO configure register */
    gpg_con |= gpio_mode<<(2*gpio_num);   /* Set the currespond GPIO as output mode */

    //带参数宏,实现将gpgdat写入gpio_addr。
    s3c_gpio_write(gpg_con,gpio_addr);    //此处的gpio_addr是偏移地址,调用此宏后会根据s3c_gpg_membase转换为绝对虚拟地址
    
    return 0;
}

//设置GPIO引脚电平状态,此函数由上述的带参数宏调用
static int s3c2440_gpio_cfgpin_status(unsigned long gpio_addr,unsigned char gpio_num, unsigned char gpio_status)
{
    volatile unsigned long  gpg_dat;
    
    if((GPIO_STATUS_LOW != gpio_status) && (GPIO_STATUS_HIGH != gpio_status))
    {
        return -1;
    }

    /* Set GPxDAT register, set correspond GPIO port power level as high level or low level */
    gpg_dat = s3c_gpio_read(gpio_addr); //此处的gpio_addr是偏移地址,调用此宏后会根据s3c_gpg_membase转换为绝对虚拟地址
    
    if(GPIO_STATUS_LOW == gpio_status)
    {
        gpg_dat &= ~(0x1<>= 1;    
    }    
    s3c_18b20_gpio_setsta(GPIO_STATUS_HIGH); // 重新释放ds18b20总线     
}   

//ds18b20读数据时序
static unsigned char s3c_ds18b20_clk_read_byte(void)    
{    
    int i;    
    unsigned char data = 0;    

    for (i = 0; i < 8; i++)    
    {    
        // 总线从高拉至低,只需维持低电平17ts,再把总线拉高,就产生读时隙     
        s3c_18b20_gpio_mode(GPIO_MODE_OUTPUT);   
        s3c_18b20_gpio_pullup(GPIO_PULLUP_ENABLE);   
        s3c_18b20_gpio_setsta(GPIO_STATUS_HIGH);  
        udelay(2);    
        s3c_18b20_gpio_setsta(GPIO_STATUS_LOW);   
        udelay(2);    
        s3c_18b20_gpio_setsta(GPIO_STATUS_HIGH);   
        udelay(8);    
        data >>= 1;    
        s3c_18b20_gpio_mode(GPIO_MODE_INPUT);    
        if (s3c_18b20_gpio_getsta())    
            data |= 0x80;    
        udelay(50);    
    }    
    s3c_18b20_gpio_mode(GPIO_MODE_OUTPUT);   
    s3c_18b20_gpio_pullup(GPIO_PULLUP_ENABLE);   
    s3c_18b20_gpio_setsta(GPIO_STATUS_HIGH); // 释放ds18b20总线     
    return data;    
}  


//内核的调用接口
static int s3c_18b20_open(struct inode *inode, struct file *file)
{
    int flag = 0;    

    printk(KERN_ERR "open start\n");

    flag = s3c_ds18b20_clk_reset();    
    
    printk(KERN_ERR "ds18b20 reset is %d\n",flag);
    
    if (flag & 0x01)    
    {    
        printk(KERN_WARNING "open ds18b20 failed\n");    
        return -1;    
    }    
    printk(KERN_NOTICE "open ds18b20 successful\n");    
    return 0;    
}

//内核的调用接口
static int s3c_18b20_release(struct inode *inode, struct file *file)
{
    printk(KERN_DEBUG "/dev/s3c_18b20%d closed.\n", iminor(inode));

    return 0;
}

//内核的调用接口
static ssize_t s3c_18b20_read(struct file *filp, char __user * buf, size_t count, loff_t * f_pos) 
{
    int flag;    
    unsigned long err;    
    unsigned char result[2] = { 0x00, 0x00 };    
    
    flag = s3c_ds18b20_clk_reset(); 
    
    if (flag & 0x01)    
    {    
        printk(KERN_WARNING "ds18b20 init failed\n");    
        return -1;    
    }    

    s3c_ds18b20_clk_write_byte(0xcc);    
    s3c_ds18b20_clk_write_byte(0x44);    

    flag = s3c_ds18b20_clk_reset();    
    if (flag & 0x01)    
        return -1;    

    s3c_ds18b20_clk_write_byte(0xcc);    
    s3c_ds18b20_clk_write_byte(0xbe);    

    result[0] = s3c_ds18b20_clk_read_byte();    // 温度低八位     
    result[1] = s3c_ds18b20_clk_read_byte();    // 温度高八位     

    err = copy_to_user(buf, &result, sizeof(result));    
    return err ? -EFAULT : min(sizeof(result), count);    
}    

//定义的ds18b20文件操作的数据结构
static struct file_operations s3c_18b20_fops = 
{
    .owner   = THIS_MODULE,
    .open    = s3c_18b20_open,
    .read    = s3c_18b20_read,
    .release = s3c_18b20_release,
};

//模块安装调用的初始化
static int __init s3c_18b20_init(void)
{
    int                    result;
    dev_t                  devno;

    //申请并映射虚拟地址
    if( 0 != s3c_18b20_addr_init() )
    {
        printk(KERN_ERR "s3c2440 18B20 addr initialize failure.\n");
        return -ENODEV;
    }

    //为设备注册设备号。如果dev_major不为0,则动态申请主设备号。否者使用dev_major为主设备号
    if (0 != dev_major) /*  Static */
    {
        devno = MKDEV(dev_major, dev_minor);
        result = register_chrdev_region(devno, dev_count, DEV_NAME);
    }
    else
    {
        result = alloc_chrdev_region(&devno, dev_minor, dev_count, DEV_NAME);
        dev_major = MAJOR(devno);
    }

    /*  Alloc for device major failure */
    if (result < 0)
    {
        printk(KERN_ERR "S3C %s driver can't use major %d\n", DEV_NAME, dev_major);
        return -ENODEV;
    } 
    
    printk(KERN_DEBUG "S3C %s driver use major %d\n", DEV_NAME, dev_major);

    //为s3c_18b20_cdev数据结构申请空间
    if(NULL == (s3c_18b20_cdev=cdev_alloc()) )
    {
        printk(KERN_ERR "S3C %s driver can't alloc for the cdev.\n", DEV_NAME);
        unregister_chrdev_region(devno, dev_count);
        return -ENOMEM;
    }
    
    //绑定字符设备数据结构
    s3c_18b20_cdev->owner = THIS_MODULE;
    cdev_init(s3c_18b20_cdev, &s3c_18b20_fops);

    //注册cdev到内核
    result = cdev_add(s3c_18b20_cdev, devno, dev_count);
    
    if (0 != result)
    {   
        printk(KERN_INFO "S3C %s driver can't reigster cdev: result=%d\n", DEV_NAME, result); 
        goto ERROR;
    }

            
    printk(KERN_ERR "S3C %s driver[major=%d] version %d.%d.%d installed successfully!\n", 
            DEV_NAME, dev_major, DRV_MAJOR_VER, DRV_MINOR_VER,DRV_REVER_VER);
    return 0;


ERROR:
    printk(KERN_ERR "S3C %s driver installed failure.\n", DEV_NAME);
    cdev_del(s3c_18b20_cdev);
    unregister_chrdev_region(devno, dev_count);
    return result;
}

static void __exit s3c_18b20_exit(void)
{
    dev_t devno = MKDEV(dev_major, dev_minor);

    s3c_18b20_addr_release();

    cdev_del(s3c_18b20_cdev);
    unregister_chrdev_region(devno, dev_count);

    printk(KERN_ERR "S3C %s driver version %d.%d.%d removed!\n", 
            DEV_NAME, DRV_MAJOR_VER, DRV_MINOR_VER,DRV_REVER_VER);

    return ;
}

/* These two functions defined in  */
module_init(s3c_18b20_init);
module_exit(s3c_18b20_exit);

module_param(debug, int, S_IRUGO);
module_param(dev_major, int, S_IRUGO);

MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION(DRV_DESC);
MODULE_LICENSE("GPL");

四、编译的Makefile

LINUX_SRC = ${shell pwd}/../kernel/linux-3.0
CROSS_COMPILE=/opt/xtools/arm920t/bin/arm-linux-
INST_PATH=${shell pwd}/
PWD := $(shell pwd)
EXTRA_CFLAGS+=-DMODULE
obj-m += kernel_18b20.o

modules:
        @make -C $(LINUX_SRC) M=$(PWD) modules
        @make clear

uninstall:
        rm -f ${INST_PATH}/*.ko

install: uninstall
        cp -af *.ko ${INST_PATH}

clear:
        @rm -f *.o *.cmd *.mod.c
        @rm -rf *~ core .depend .tmp_versions Module.symvers modules.order -f
        @rm -f .*ko.cmd .*.o.cmd .*.o.d

clean: clear
        @rm -f *.ko

解释说明:
LINUX_SRC 指定开发板已编译过得内核路径
CROSS_COMPILE 指定交叉编译器
INST_PATH 安装路径
obj-m += kernel_18b20.o 编译成模块,输出文件名为kernel_18b20.o

编译运行。
修改驱动文件名为kernel_18b20.c
使用make编译后,将kernel_18b20.ko传输至开发板。
使用insmod安装。可以使用dmesg查看安装打印信息,也可以使用lsmod查看设备信息

[root@NickQ_fl2440 driver]# insmod kernel_18b20.ko 
[root@NickQ_fl2440 driver]# dmesg
S3C s3c18b20 driver use major 253
S3C s3c18b20 driver[major=253] version 1.0.0 installed successfully!
[root@NickQ_fl2440 driver]# lsmod
kernel_18b20 3250 0 - Live 0xbf000000

然后查看主设备号cat /proc/devices,使用moknod创建设备节点

[root@NickQ_fl2440 driver]# cat /proc/devices | grep s3c18b20
253 s3c18b20
[root@NickQ_fl2440 driver]# mknod -m 755 /dev/s3c18b20 c 253 0
[root@NickQ_fl2440 driver]# ls /dev/s3c18b20 
/dev/s3c18b20

mknod 用法

[root@NickQ_fl2440 driver]# mknod --help
BusyBox v1.27.1 (2017-11-20 21:14:15 CST) multi-call binary.

Usage: mknod [-m MODE] NAME TYPE MAJOR MINOR

Create a special file (block, character, or pipe)

        -m MODE Creation mode (default a=rw)
TYPE:
        b       Block device
        c or u  Character device
        p       Named pipe (MAJOR and MINOR are ignored)

五、编写测试程序

[nick@XQLY driver]$ vim ~/s3c2440/linux/drivers/test_18b20.c 

#include 
#include 
#include 
#include 


int main()
{
    int fd;
    unsigned char result[2];
    unsigned char integer_value = 0;
    float decimal_value = 0.0;
    float temperature   = 0.0;

    fd = open("/dev/s3c18b20", 0);

    if(fd < 0)
    {
        perror("open device failed\n");
        exit(1);
    }
    else
        printf("Open success!\n");

    while(1)
    {
        read(fd, &result, sizeof(result));

        integer_value = ((result[0] & 0xf0) >> 4) | ((result[1] & 0x08) << 4);

        decimal_value = (result[0] & 0x0f) * 0.0625;

        temperature = (float)integer_value + decimal_value;

        printf("Current Temperature:%6.4f\n", temperature);

        sleep(1);
    }
}
   

解析温度的说明:

我们读取出来的数据放置在result[2]里。
result[0]对应从LS Byte里读回来的值
result[1]对应从MS Byte里读回来的值

所以integer_value = ((result[0] & 0xf0) >> 4) | ((result[1] & 0x08) << 4);是将LS的高四位和MS的低四位取出(其中有一位符号位S),并合成一个数,即为整数部分。decimal_value = (result[0] & 0x0f) * 0.0625;是提取小数部分

六、测试现象

[root@NickQ_fl2440 driver]# ./start_s3c18b20 
Open success!
Current Temperature:26.5625
Current Temperature:26.6250
Current Temperature:26.5625
Current Temperature:26.6250
Current Temperature:26.6250
^C

转载于:https://www.cnblogs.com/NickQ/p/9026545.html

你可能感兴趣的:(ARM Linux驱动篇 学习温度传感器ds18b20的驱动编写过程)