【H5/JS】游戏常用算法-追踪算法

追踪算法在动作游戏中非常常见,从很早的游戏《吃豆人》到大型的街机机战类游戏,到处可见追踪效果的身影。一个好的追踪算法将会大大提高游戏的可玩性和玩家的兴趣。


【简单算法】

先来看一个简单的跟踪算法,如下图所示,假设在canvas坐标系中存在物体A和B,物体A将把B作为追踪目标,物体在二维空间中的运动可以分解为坐标系中X、Y轴的运动,其在X和Y方向的速度决定了物体运行的方向和速率。别忘了,速度是有方向和大小的,于是物体A的速度在X、Y轴方向分解成vx、vy,B物体也是一样,这样,如果物体A要追踪到B,只需要比较两个物体分别在 X、Y 方向的速度即可。设物体 A 坐标为(x1, y1),A 的速度分解为(vx, vy),物体B 坐标为(x2, y2),B 的速度分解为(vx1, vy1),假设A 要追到B,对于水平X 方向分量来说,如果x2>x1,表示B在A的右边,这时候必须设置vx为某一个正值,反之,则需要将vx设置成一个负值,同样的道理,对于垂直方向Y来说,需要进行同样的处理即可。

【H5/JS】游戏常用算法-追踪算法_第1张图片

基于以上这个简单算法的原理,可以来尝试一个简单的例子。




    
    
    追踪算法






预览地址:待上传

采用这种算法的方块的行动比较突兀,方块的变向比较突然,效果看起来不是非常理想,于是,就产生了下面的视线追踪算法。

【视线追踪算法】

视线追踪算法,采用这种算法,追踪者将会始终保持着和目标对象的直线进行移动,如下图所示,看起来就好像追踪捕食的猎豹一样,死死地盯着目标不放。

如果要达到这种效果,实际上就表示在任意时刻,A 的速度方向必须保持在 AB 之间连接的直线上面,那么这个时候如何获取A的速度在x轴和y轴方向上的分量呢?

这里我们可以采用向量来解决问题,向量是一种只有方向和大小而没有位置的概念,由向量的知识可知,假设任意时刻物体 A 向量表示为 v1(x1, y1),物体 B 向量表示为 v2(x2, y2),则由A 指向B 位置的向量v3=(x2−x1, y2−y1)。这3 个向量的关系可以由图6-4 表示出来,设向量v3的长度为VLen = (x2−x1)²+(y2−y1)² ,则向量v3标准化后可以用v4=((x2−x1)/VLen,(y2−y1)/VLen)表示。最后得到的v4在x轴方向上的分量就可以作为物体A在该时刻X轴方向上的分量,v4在Y轴方向上的分量就可以作为物体A在该时刻Y轴方向上的分量。

【H5/JS】游戏常用算法-追踪算法_第2张图片

将上面的简单算法,按照视线追踪算法进行改写:




    
    
    追踪算法






在线预览地址:https://github.com/krapnikkk/JS-gameMathematics

你可能感兴趣的:(游戏算法)