数据结构与算法(006):线性表-单链表

单链表的整表创建

对于顺序存储结构的线性表的整表创建,我们可以用数组的初始化来直观理解。

而单链表和顺序存储结构就不一样了,它不像顺序存储结构数据这么集中,它的数据可以是分散在内存各个角落的,他的增长也是动态的。

对于每个链表来说,它所占用空间的大小和位置是不需要预先分配划定的,可以根据系统的情况和实际的需求即时生成。

人生就要追求向单链表一样,灵活应变!

创建单链表的过程是一个动态生成链表的过程,从“空表”的初始状态起,依次建立各元素结点并逐个插入链表。

所以单链表整表创建的算法思路如下:

声明一结点p和计数器变量i;

初始化一空链表L;

让L的头结点的指针指向NULL,即建立一个带头结点的单链表;

循环实现后继结点的赋值和插入。

头插法建立单链表

头插法从一个空表开始,生成新结点,读取数据存放到新结点的数据域中,然后将新结点插入到当前链表的表头上,直到结束为止。

简单来说,就是把新加进的元素放在表头后的第一个位置:

先让新节点的next指向头节点之后

然后让表头的next指向新节点

嗯,用现实环境模拟的话就是插队的方法,始终让新结点插在第一的位置。

实现代码如下:CreateListHead.c

/* 头插法建立单链表示例 */

void CreateListHead(LinkList *L, int n)
{
    LinkList p;
    int i;

    srand(time(0));   // 初始化随机数种子

    *L = (LinkList)malloc(sizeof(Node));
    (*L)->next = NULL;

    for( i=0; i < n; i++ )
    {
        p = (LinkList)malloc(sizeof(Node));  // 生成新结点
        p->data = rand()%100+1;
        p->next = (*L)->next;
        (*L)->next = p;
    }
}

尾插法建立单链表

头插法建立链表虽然算法简单,但生成的链表中结点的次序和输入的顺序相反。

就像现实社会我们鄙视插队不遵守纪律的孩子,那编程中我们也可以不这么干,我们可以把思维逆过来:把新结点都插入到最后,这种算法称之为尾插法。

实现代码如下:CreateListTail.c

/* 尾插法建立单链表演示 */

void CreateListTail(LinkList *L, int n)
{
    LinkList p, r;
    int i;

    srand(time(0));
    *L = (LinkList)malloc(sizeof(Node));
    r = *L;

    for( i=0; i < n; i++ )
    {
        p = (Node *)malloc(sizeof(Node));
        p->data = rand()%100+1;
        r->next = p;
        r = p;                 // 备注:初学者可能很难理解这句,重点解释。
    }

    r->next = NULL;
}

单链表的整表删除

当我们不打算使用这个单链表时,我们需要把它销毁。

其实也就是在内存中将它释放掉,以便于留出空间给其他程序或软件使用。

单链表整表删除的算法思路如下:

声明结点p和q;

将第一个结点赋值给p,下一结点赋值给q;

循环执行释放p和将q赋值给p的操作;

实现代码如下:ClearList.c

Status ClearList(LinkList *L)
{
    LinkList p, q;

    p = (*L)->next;

    while(p)
    {
        q = p->next;
        free(p);
        p = q;
    }

    (*L)->next = NULL;

    return OK;
}

这段算法代码里,常见的错误就是有同学会觉得q变量没有存在的必要,只需要在循环体内直接写free(p); p = p->next; 即可?

可这个世上没有无缘无故的爱,这样做会带来什么问题呢?

要知道p是一个结点,它除了有数据域,还有指针域。当我们做free(p);时候,其实是对它整个结点进行删除和内存释放的工作。而我们整表删除是需要一个个结点删除的,所以我们就需要q来记载p的下一个结点。

单链表结构与顺序存储结构优缺点

我们分别从存储分配方式、时间性能、空间性能三方面来做对比。

存储分配方式:

顺序存储结构用一段连续的存储单元依次存储线性表的数据元素。

单链表采用链式存储结构,用一组任意的存储单元存放线性表的元素。

时间性能:

查找

顺序存储结构O(1)

单链表O(n)

插入和删除

顺序存储结构需要平均移动表长一半的元素,时间为O(n)

单链表在计算出某位置的指针后,插入和删除时间仅为O(1)

空间性能:

顺序存储结构需要预分配存储空间,分大了,容易造成空间浪费,分小了,容易发生溢出。

单链表不需要分配存储空间,只要有就可以分配,元素个数也不受限制。

综上所述对比,我们得出一些经验性的结论:

若线性表需要频繁查找,很少进行插入和删除操作时,宜采用顺序存储结构。

若需要频繁插入和删除时,宜采用单链表结构。

比如说游戏开发中,对于用户注册的个人信息,除了注册时插入数据外,绝大多数情况都是读取,所以应该考虑用顺序存储结构。

而游戏中的玩家的武器或者装备列表,随着玩家的游戏过程中,可能会随时增加或删除,此时再用顺序存储就不太合适了,单链表结构就可以大展拳脚了。

当线性表中的元素个数变化较大或者根本不知道有多大时,最好用单链表结构,这样可以不需要考虑存储空间的大小问题。

而如果事先知道线性表的大致长度,比如一年12个月,一周就是星期一至星期日共七天,这种用顺序存储结构效率会高很多。

总之,线性表的顺序存储结构和单链表结构各有其优缺点,不能简单的说哪个好,哪个不好,需要根据实际情况,来综合平衡采用哪种数据结构更能满足和达到需求和性能。

可下载观看 数据结构与算法动画演示,以帮助我们更好的理解和学习代码的实现过程。

你可能感兴趣的:(数据结构与算法)