本文旨在设计有效的卷积网络体系结构用于视频中的动作识别,并在有限的训练样本下进行模型学习。TSN基于two-stream方法构建。
论文主要贡献:
数据集表现:HMDB51(69.4%)、UCF101(94.2%)
two-stream 卷积网络对于长范围时间结构的建模无能为力,主要因为它仅仅操作一帧(空间网络)或者操作短片段中的单堆帧(时间网络),因此对时间上下文的访问是有限的。视频级框架TSN可以从整段视频中建模动作。
和two-stream一样,TSN也是由空间流卷积网络和时间流卷积网络构成。但不同于two-stream采用单帧或者单堆帧,TSN使用从整个视频中稀疏地采样一系列短片段,每个片段都将给出其本身对于行为类别的初步预测,从这些片段的“共识”来得到视频级的预测结果。在学习过程中,通过迭代更新模型参数来优化视频级预测的损失值(loss value)。
TSN网络示意图如下:
由上图所示,一个输入视频被分为 K K 段(segment),一个片段(snippet)从它对应的段中随机采样得到。不同片段的类别得分采用段共识函数(The segmental consensus function)进行融合来产生段共识(segmental consensus),这是一个视频级的预测。然后对所有模式的预测融合产生最终的预测结果。
注意:接下来“片段”代表文章中“snippet”,“段”代表文章中“segment”
具体来说,给定一段视频 V V ,把它按相等间隔分为 K K 段 {S1,S2,⋯,SK} { S 1 , S 2 , ⋯ , S K } 。接着,TSN按如下方式对一系列片段进行建模:
其中:
其中, C C 是行为总类别数, yi y i 是类别 i i 的groundtruth,实验中片段的数量 K K 设置为3。本工作中共识函数 G G 采用最简单的形式,即 Gi=g(Fi(T1),…,Fi(TK)) G i = g ( F i ( T 1 ) , … , F i ( T K ) ) ,采用用聚合函数 g g (aggregation function)从所有片段中相同类别的得分中推断出某个类别分数 Gi G i 。聚合函数 g g 采用均匀平均法来表示最终识别精度。
TSN是可微的,或者至少有次梯度,由 g g 函数的选择决定。这使我们可以用标准反向传播算法,利用多个片段来联合优化模型参数 W W 。在反向传播过程中,模型参数 W W 关于损失值 L L 的梯度为:
其中,K是TSN使用的段数。TSN从整个视频中学习模型参数而不是一个短的片段。与此同时,通过对所有视频固定 K K ,作者提出了一种稀疏时间采样策略,其中采样片段只包含一小部分帧。与先前使用密集采样帧的方法相比,这种方法大大降低计算开销。
为了达到最佳表现,一些好的实践如下:
一些工作表明更深的结构可以提升物体识别的表现。然而,two-stream网络采用了相对较浅的网络结构(ClarifaiNet)。本文选择BN-Inception (Inception with Batch Normalization)构建模块,由于它在准确率和效率之间有比较好的平衡。作者将原始的BN-Inception架构适应于two-stream架构,和原始two-stream卷积网络相同,空间流卷积网络操作单一RGB图像,时间流卷积网络将一堆连续的光流场作为输入。
TSN通过探索更多的输入模式来提高辨别力。除了像two-stream那样,空间流卷积网络操作单一RGB图像,时间流卷积网络将一堆连续的光流场作为输入,作者提出了两种额外的输入模式:RGB差异(RGB difference)和扭曲的光流场(warped optical flow fields)。
单一RGB图像表征特定时间点的静态信息,从而缺少上下文信息。如上图2所示,两个连续帧的RGB差异表示动作的改变,对应于运动显著区域。故试验将RGB差异堆作为另一个输入模式。
TSN将光流场作为输入,致力于捕获运动信息。在现实拍摄的视频中,通常存在摄像机的运动,这样光流场就不是单纯体现出人类行为。如上图2所示,由于相机的移动,视频背景中存在大量的水平运动。受到iDT(improved dense trajectories)工作的启发,作者提出将扭曲的光流场作为额外的输入。通过估计估计单应性矩阵(homography matrix)和补偿相机运动来提取扭曲光流场。如图2所示,扭曲光流场抑制了背景运动,使得专注于视频中的人物运动。
由于行为检测的数据集相对较小,训练时有过拟合的风险,为了缓解这个问题,作者设计了几个训练策略。
空间网络以RGB图像作为输入:故采用在ImageNet上预训练的模型做初始化。对于其他输入模式(比如:RGB差异和光流场),它们基本上捕捉视频数据的不同视觉方面,并且它们的分布不同于RGB图像的分布。作者提出了交叉模式预训练技术:利用RGB模型初始化时间网络。
首先,通过线性变换将光流场离散到从0到255的区间,这使得光流场的范围和RGB图像相同。然后,修改RGB模型第一个卷积层的权重来处理光流场的输入。具体来说,就是对RGB通道上的权重进行平均,并根据时间网络输入的通道数量复制这个平均值。这一策略对时间网络中降低过拟合非常有效。
在学习过程中,Batch Normalization将估计每个batch内的激活均值和方差,并使用它们将这些激活值转换为标准高斯分布。这一操作虽可以加快训练的收敛速度,但由于要从有限数量的训练样本中对激活分布的偏移量进行估计,也会导致过拟合问题。因此,在用预训练模型初始化后,冻结所有Batch Normalization层的均值和方差参数,但第一个标准化层除外。由于光流的分布和RGB图像的分布不同,第一个卷积层的激活值将有不同的分布,于是,我们需要重新估计的均值和方差,称这种策略为部分BN。与此同时,在BN-Inception的全局pooling层后添加一个额外的dropout层,来进一步降低过拟合的影响。dropout比例设置:空间流卷积网络设置为0.8,时间流卷积网络设置为0.7。
数据增强能产生不同的训练样本并且可以防止严重的过拟合。在传统的two-stream中,采用随机裁剪和水平翻转方法增加训练样本。作者采用两个新方法:角裁剪(corner cropping)和尺度抖动(scale-jittering)。
角裁剪(corner cropping):仅从图片的边角或中心提取区域,来避免默认关注图片的中心。
尺度抖动(scale jittering):将输入图像或者光流场的大小固定为 256×340 256 × 340 ,裁剪区域的宽和高随机从 {256,224,192,168} { 256 , 224 , 192 , 168 } 中选择。最终,这些裁剪区域将会被resize到 224×224 224 × 224 用于网络训练。事实上,这种方法不光包括了尺度抖动,还包括了宽高比抖动。
由于在TSN中片段级的卷积网络共享模型参数,所以学习到的模型可以进行帧评估。具体来说,作者采用与two-stream相同的测试方案——即从动作视频中采样25个RGB帧或光流堆。同时,从采样得到的帧中裁剪4个边角和1个中心以及它们的水平翻转来评估卷积网络。
空间和时间流网络采用加权平均的方式进行融合。相比于two-strean,TSN中空间流卷积网络和时间流卷积网络的性能差距大大缩小。基于此,设置空间流的权重为1,设置时间流的权重为1.5。当正常和扭曲光流场都使用时,将其权重1.5分出1给正常光流场,0.5给扭曲光流场。
在TSN部分说过,段共识函数在Softmax归一化之前。为了根据训练测试模型,在Softmax之前融合了25帧和不同流的预测分数。
实验在两个大型主流动作数据集HMDB51和UCF101上进行。UCF101数据集包含13,320个视频剪辑,其中共101类动作。HMDB51数据集是来自各种来源的大量现实视频的集合,比如:电影和网络视频,数据集包含来自51个动作分类的6,766个视频剪辑。
作者使用小批量随机梯度下降算法(mini-batch stochastic gradient descent algorithm)来学习网络参数,batch size设置为256,momentum设置为0.9。用在ImageNet上预训练的模型对网络权重进行初始化。实验中learning rate设置较小:对于空间网络,初始化为0.01,并且每2,000次迭代降为它的 110 1 10 ,训练过程共迭代4,500次;对于时间网络,初始化为0.005,并且在第12,000和18,000次迭代之后降为它的 110 1 10 ,训练过程共迭代20,000次。
作者使用TVL1光流算法来提取正常光流场和扭曲光流场。为了加速训练,使用多GPU数据并行策略,在修改过的Caffe和OpenMPI上实现。
UCF101训练总时长(8块TITANX GPUs):
作者对四种方案进行实验:(1)从零开始训练;(2)仅仅预训练空间流;(3)采用交叉输入模式预训练;(4)交叉输入模式预训练和部分BN dropout结合。结果总结在下表1中:
由上表可以看出,从零开始训练比基线算法(two-stream卷积网络)的表现要差很多,证明需要重新设计训练策略来降低过拟合的风险,特别是针对空间网络。对空间网络进行预训练、对时间网络进行交叉输入模式预训练,取得了比基线算法更好的效果。之后还在训练过程中采用部分BN dropout的方法,将识别准确率提高到了92.0%。
在上文中提出了两种新的模式:RGB差异和扭曲的光流场。不同输入模式的表现比较如下表2。
由上表可以看出:首先,RGB图像和RGB差异的结合可以将识别准确率提高到87.3%,这表明两者的结合可以编码一些补充信息。光流和扭曲光流的表现相近(87.2% vs 86.9%),两者融合可以提高到87.8%。四种模式的结合可以提高到91.7%。由于RGB差异可以描述相似但不稳定的动作模式,作者还评估了其他三种模式结合的表现(92.3% vs 91.7%)。作者推测光流可以更好地捕捉运动信息,而RGB差异在描述运动时是不稳定的。在另一方面,RGB差异可以当作运动表征的低质量、高速的替代方案。
在公式 (1) ( 1 ) 中,段共识函数被定义为它的聚合函数 g g ,这里评估 g g 的三种形式:(1)最大池化;(2)平均池化;(3)加权平均。实验结果见表3。
我们发现平局池化函数达到最佳的性能。因此在接下来的实验中选择平均池化作为默认的聚合函数。然后比较了不同网络架构的表现,结果总结在表4。
具体来说,比较了3个非常深的网络架构:BN-Inception、GoogLeNet和VGGNet-16。在这些架构中,BN-Inception表现最好,故选择它作为TSN的卷积网络架构。
现在,可以按照上述分析好的设置实现TSN了。从准确率的角度进行组件分析,结果如下: