- GPU与CPU:架构对比与技术应用解析
Hello.Reader
运维其他架构
1.引言1.1为什么探讨GPU与CPU的对比?随着计算技术的不断发展,GPU(图形处理单元)和CPU(中央处理单元)已经成为现代计算机系统中最重要的两个组成部分。然而,随着应用场景的多样化和对性能需求的提高,这两种处理器的角色正在逐渐发生变化。GPU以其强大的并行计算能力,在深度学习、图像处理和科学计算等领域迅速崛起,而CPU则在通用计算任务中保持其核心地位。了解GPU与CPU的设计差异和适用场景
- 博通Emulex Secure HBA:后量子加密与零信任架构的存储网络革命
古猫先生
产业动态架构网络量子计算
在数字化浪潮中,数据安全愈发关键。近期,博通推出的EmulexSecureHBAs配备后量子加密技术,引发了行业的广泛关注。这一创新产品不仅是技术的突破,更是应对未来数据安全挑战的重要举措。量子计算机的并行计算能力理论上可破解当前广泛使用的RSA、ECC等非对称加密算法,尤其是针对公钥基础设施(PKI)的攻击可能彻底颠覆现有网络安全体系。尽管实用化量子计算机尚未成熟,但其威胁已引发全球安全界的警惕
- 大数据经典技术解析:Hadoop+Spark大数据分析原理与实践
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介大数据时代已经来临。随着互联网、移动互联网、物联网等新兴技术的出现,海量数据开始涌现。而在这些海量数据的基础上进行有效的处理,成为迫切需要解决的问题之一。ApacheHadoop和ApacheSpark是目前主流开源大数据框架。由于其易于部署、高容错性、并行计算能力强、适应数据量大、可编程、社区支持广泛等特点,大大提升了大数据应用的效率和效果。本文通过对Hado
- 前沿计组知识入门(二)
tianyunlinger
计组人工智能笔记
第2页:并行计算与编程硬件:多处理器多内存互连网络系统软件:并行操作系统用于表达和协调并发的编程构造应用软件:并行算法目标:利用硬件、系统和应用软件实现加速(速度提升):Tp=TspT_p=\frac{T_s}{p}Tp=pTs解决需要大量内存的问题第3页:并行算法/公式化并行公式化:并行化串行算法。并行算法:可能与串行算法完全不同。重点:主要讨论如何开发并行公式化。也会涉及一些非串行算法的并行例
- GaussDB 学习进阶路线-进阶篇:分布式架构、性能调优与高可用实战
Jan123.
gaussdb学习分布式
引言GaussDB的进阶能力体现在对分布式架构、企业级高可用、深度性能优化的掌握上。本文将以生产环境为背景,深入剖析GaussDB的数据分片、并行计算、主备容灾、云原生集成等核心技术,结合实战配置与调优案例,助你解锁GaussDB的高阶技能,构建稳定高效的分布式数据库系统!一、分布式架构:数据分片与并行计算1.分布式表设计与数据分片分片策略策略适用场景示例哈希分片数据均匀分布,避免热点DISTRI
- Rust并发编程实践:10分钟入门系统级编程
m0_74824687
面试学习路线阿里巴巴rustpython算法
目录学前一问:Rust为何而出现?摘要引言正文解析:一、Rust中的并发编程基础1.1线程1.2协程二、Rust并发编程的高级特性2.1通道2.2原子操作2.3锁三、实例展示:优化并发编程性能1.并行计算2.异步IO3.数据并行四、并发编程的挑战与最佳实践结论:参考文献:学前一问:Rust为何而出现?Rust是一门现代的系统编程语言,它的设计目标是提供安全性、并发性和高性能。Rust的出现是为了解
- 智算中心的核心硬件是什么?
Imagination官方博客
本文来源:游方AI智算中心,作为人工智能时代的关键基础设施,其核心硬件的构成与性能直接影响着智能计算的效率与质量。以下是对智算中心核心硬件的详细阐述:一、AI芯片AI芯片是专门为加速人工智能计算而设计的硬件,能够与各种AI算法协同工作,满足对算力的极高需求。当前主流的AI加速计算芯片包括:1、GPU(图形处理器)GPU是智算中心的算力担当,其强大的并行计算能力使其在深度学习领域大放异彩。GPU芯片
- Spark之PySpark
james二次元
大数据SparkPythonPySpark
PySpark是ApacheSpark的PythonAPI,它允许开发者使用Python编程语言进行大规模数据处理和分析。ApacheSpark是一个快速、通用、可扩展的大数据处理引擎,支持批处理、流处理、机器学习、图计算等多种数据处理模式。PySpark使得Python开发者能够利用Spark强大的分布式计算能力,处理大数据集,并执行高效的并行计算。一、PySpark核心概念1.RDD(弹性分布
- DeepEP:开源通信库的高效专家并行计算解决方案
耶耶Norsea
网络杂烩人工智能
摘要DeepEP是一个专为Mixture-of-Experts(MoE)和专家并行计算设计的开源通信库。它提供高效的all-to-all通信模式,支持GPU之间的高吞吐量和低延迟数据交换。DeepEP旨在优化专家并行计算中的通信效率,确保在大规模分布式系统中实现高性能的数据处理。关键词开源通信库,专家并行,MoE计算,GPU交换,高效通信一、大纲11.1DeepEP开源通信库概述DeepEP是一个
- oneAPI介绍
Cindy020506
oneapi人工智能
什么是InteloneAPI?InteloneAPI是由英特尔公司推出的跨平台编程模型和工具集合。它旨在简化异构计算环境下的软件开发,使开发人员能够在多种处理器架构上编写高性能应用程序。InteloneAPI的设计理念是提供统一的编程接口,让开发人员能够利用不同类型的处理器实现高效并行计算。InteloneAPI中有什么?InteloneAPI是基于标准的开发工具集合和库,其中最重要的组件是Dat
- DeepSeep开源周,第三天:DeepGEMM是啥?
程序员差不多先生
pytorch
DeepGEMM是Deepseek开源的一个高性能矩阵乘法优化库,专为深度学习场景设计。矩阵乘法(GEMM)是深度学习模型的核心运算(如全连接层、卷积层等),其性能直接影响训练和推理效率。DeepGEMM通过算法优化、硬件指令集加速和并行计算技术,显著提升计算速度,适用于GPU、CPU等硬件平台。对开发者的用处性能提升优化计算密集型任务(如LLM训练/推理),降低延迟,提升吞吐量。支持混合精度计算
- ATB概念之:算子tiling
人工智能深度学习
1什么是算子tiling在计算机科学和深度学习领域,算子tiling(有时也被称作操作符tiling或者循环tiling)是一种优化技术,主要用于提高计算效率,尤其是在处理大规模张量运算时。Tiling技术通常用于将大的计算任务分解成更小的块,这些小块可以在内存中更高效地处理,或者更适合并行计算环境。在深度学习框架中,算子tiling可以应用于不同的场景:内存优化:通过将大的张量切分成更小的部分,
- [15] 使用Opencv_CUDA 模块实现基本计算机视觉程序
明月醉窗台
CUDA-Opencv计算机视觉opencv人工智能图像处理CUDA
使用Opencv_CUDA模块实现基本计算机视觉程序CUDA提供了出色的接口,发挥GPU的并行计算能力来加速复杂的计算应用程序利用CUDA和Opencv的功能实现计算机视觉应用1.对图像的算术和逻辑运算两个图像相加#include#include"opencv2/opencv.hpp"#include
- GPU和FPGA的区别
Florence23
fpga开发
GPU(GraphicsProcessingUnit,图形处理器)和FPGA(Field-ProgrammableGateArray,现场可编程门阵列)不是同一种硬件。我的理解是,虽然都可以用于并行计算,但是GPU是纯计算的硬件,FPGA是控制+计算的可编程的硬件。FPGA有点像CPU,区别在于,CPU的硬件是固定的,而FPGA的硬件是可编程的。FPGA:由大量的可编程逻辑块(CLB)、查找表(L
- Python的那些事第三十篇:并行计算库在大数据分析中的应用Dask
暮雨哀尘
Python的那些事python数据分析开发语言运维服务器数据挖掘
Dask:并行计算库在大数据分析中的应用摘要随着数据量的爆炸性增长,传统的数据分析工具(如Pandas和NumPy)在处理大规模数据集时面临内存限制和计算效率低下的问题。Dask作为一种开源的并行计算库,通过动态任务调度和分布式计算,能够高效处理超出内存容量的大数据集,并与Python生态系统中的Pandas、NumPy和scikit-learn等库无缝集成。本文将详细介绍Dask的架构、功能、优
- 深入理解DAG任务调度系统:核心原理与实现
AI天才研究院
计算Python实战编程实践python算法dag
1.背景介绍随着大数据、人工智能等领域的发展,任务调度系统的重要性日益凸显。DirectedAcyclicGraph(DAG)任务调度系统是一种常见的任务调度系统,它可以有效地解决多个依赖关系复杂的任务调度问题。本文将深入探讨DAG任务调度系统的核心原理和实现,为读者提供一个深入的理解。1.1背景介绍1.1.1任务调度系统简介任务调度系统是计算机科学中一个重要的研究领域,它主要关注于在并行计算系统
- Java平台上的多线程与多核处理研究
向哆哆
Java入门到精通javapython开发语言
Java平台上的多线程与多核处理研究在现代计算机架构中,多核处理器已成为主流。随着硬件性能的提升,如何有效利用多核处理器的计算能力成为开发者面临的重要问题之一。Java作为一种广泛使用的编程语言,提供了多线程编程的强大支持,使得开发者能够在多核环境下实现并行计算。本篇文章将深入探讨Java平台上的多线程与多核处理,探讨其工作原理、应用场景,并通过代码实例进行演示。1.多线程与多核处理的基本概念1.
- 深入浅出:CUDA是什么,如何利用它进行高效并行计算
码上飞扬
CUDA
在当今这个数据驱动的时代,计算能力的需求日益增加,特别是在深度学习、科学计算和图像处理等领域。为了满足这些需求,NVIDIA推出了CUDA(ComputeUnifiedDeviceArchitecture),这是一种并行计算平台和编程模型。本文将带你全面了解CUDA的基本概念、工作原理及其应用场景。一、什么是CUDA?CUDA(ComputeUnifiedDeviceArchitecture)是由
- 【深度学习pytorch-93】Transformer 相比 RNN 的优势
华东算法王
DL-pytorch深度学习pytorchtransformer
Transformer相比RNN的优势Transformer和RNN(循环神经网络)都是自然语言处理(NLP)领域的重要架构,但它们的工作原理和应用方式有很大不同。Transformer由于其独特的结构和机制,在多个方面优于RNN。以下是Transformer相比RNN的主要优势:1.并行计算能力RNN的局限性RNN是按顺序处理输入的,即每个时间步的输出都依赖于前一个时间步的输出。这意味着,在训练
- 函数式编程倡导的「不可变数据结构」如何保证性能
编程
在函数式编程(FunctionalProgramming,简称FP)中,不可变数据结构(ImmutableDataStructures)是一个核心概念。与传统的可变数据结构相比,不可变数据结构不可修改,而是通过创建新的数据结构来表达数据的变更。这一特点使得函数式编程能够简化并行计算、避免副作用,进而提高程序的可靠性和可维护性。然而,不可变数据结构可能带来的性能问题,例如内存的使用、数据复制的成本等
- 常用的高性能计算工具有哪些
这题有点难度
人工智能学习
在当今数字化时代,高性能计算(HPC)已成为推动科学、工程、技术以及商业创新的核心力量。无论是模拟宇宙的起源、设计新型航空器,还是训练复杂的人工智能模型,HPC都扮演着不可或缺的角色。本文将深入探讨高性能计算的定义、其背后的强大工具,以及它们如何助力各领域的突破性发展。一、高性能计算:定义与意义高性能计算(HPC)是一种利用超级计算机或大规模集群来处理复杂计算任务的技术。它通过并行计算和优化算法,
- cuda编程入门——并行归约(五)
我不会打代码啊啊
cuda编程算法c++gpu算力
CUDA编程入门—并行归约(数组求和为例)在并行计算中,归约(Reduction)是一种将多个数据通过特定操作(如求和、求最大值等)合并为单一结果的并行算法。其核心目标是通过并行化加速大规模数据集的聚合计算。关键概念操作类型:可结合且可交换的操作(如加法、乘法、最大值、最小值、逻辑与/或等)适合并行归约。若操作不可结合(如减法或除法),需特殊处理或无法直接并行化。并行实现方式:树形结构归约:将数据
- cuda编程入门——并行性与异构性概念
我不会打代码啊啊
cuda编程gpu算力c++
CUDA编程入门一基于cuda的异构并行计算并行性一、并行性的概念与分类概念并行性旨在通过同时处理多个任务或数据元素来提高计算速度和效率。它可以在不同的层次上实现,包括指令级并行、数据级并行和任务级并行等。分类指令级并行(Instruction-LevelParallelism,ILP):在处理器的指令执行层面,通过硬件技术(如流水线、超标量技术等)让多条指令在不同阶段同时执行,从而提高处理器的指
- 【Stable Diffusion部署至GNU/Linux】安装流程
星星点点洲
stablediffusion
以下是安装StableDiffusion的步骤,以Ubuntu22.04LTS为例子。显卡与计算架构介绍CUDA是NVIDIAGPU的专用并行计算架构技术层级说明CUDAToolkit提供GPU编译器(nvcc)、数学库(cuBLAS)等开发工具cuDNN深度神经网络加速库(需单独下载)GPU驱动包含CUDADriver(需与CUDAToolkit版本匹配)CUDA与NIDIA:硬件指令集绑定:N
- 深度学习基础知识
namelijink
深度学习人工智能
cuda简介:CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的一种并行计算平台和应用程序编程接口(API)。它允许开发人员利用NVIDIA的GPU(图形处理器)来加速各种计算任务,包括科学计算、机器学习、深度学习、数据分析等。NVIDIA是一个全球领先的计算技术公司,专注于设计和制造高性能计算设备。除了生产强大的GPU,NVIDIA还提供与其GPU
- 【笔记】使用 Pytorch 进行分布式训练
LittleNyima
人工智能深度学习pytorch分布式
本文原文以CCBY-NC-SA4.0许可协议发布于技术相关|使用Pytorch进行分布式训练,转载请注明出处。其实Pytorch分布式训练已经不算什么新技术了,之所以专门写一篇blog是因为今天训模型的时候出现了一个没见过的问题,在调试的时候发现自己平时都是用别人写好的分布式代码,没有深入研究过其中的实现细节,因此感觉有必要整理吸收一下。最简单的数据并行作为最简单的并行计算方式,使用nn.Data
- python使用ray框架改进原有代码,实现多进程与分布式
呆萌的代Ma
pythonpython
安装依赖:pipinstall-ihttps://mirrors.aliyun.com/pypi/simple/'ray[default]'ray框架可以在几乎不改变现有代码的基础上实现分布式与并行计算!!改变的只有传值的方式,与每个函数加上装饰器即可对于常规的循环任务defexponentiation_test(a,b):importtimetime.sleep(1)#这里是为了看是否是真正的多
- Python 魔法学院 - 第24篇:Python 解释器优化 ⭐⭐⭐
星核日记
《Python魔法学院》python开发语言pycharmwindowsPython性能优化
目录引言1.Cython与PyPy1.1Cython1.1.1Cython的优势1.1.2Cython的简单示例1.1.3Cython的适用场景1.2PyPy1.2.1PyPy的优势1.2.2PyPy的简单示例1.2.3PyPy的适用场景1.3Cython与PyPy的对比2.并行计算与分布式计算2.1并行计算2.1.1multiprocessing模块2.1.2concurrent.futures
- 我国化学信息学研究的地位与近期研究进展
xoaxo
算法优化生物数据库网络工作
近两年来,我国的化学信息学研究得到了快速发展,在某些专题的研究方面达到了国际前沿水平。在理论与计算化学研究中,基于第一性原理的新型并行计算方法被提出并用于纳米材料电子结构的高效计算[24],轨道分解方法被用来简化磁性质的四分量相对论计算[25]。同时,量化计算被越来越多地应用于团簇优化[26]及材料性质的预测[27],并越来越注重与实际结合用于反应过程过渡态和催化机理研究[28]。此外,密度泛函理
- GPU(Graphics Processing Unit)详解
美好的事情总会发生
AI人工智能嵌入式硬件硬件工程ai
GPU(GraphicsProcessingUnit)详解1.GPU的定义与核心特性GPU(图形处理器)是一种专为并行计算和图形渲染优化的处理器。与CPU(中央处理器)不同,GPU通过大规模并行架构实现高效处理海量数据,尤其在处理规则化、高并发任务时性能显著优于CPU。关键特性:高并行度:现代GPU包含数千个计算核心(如NVIDIAH100拥有18,432个CUDA核心)。专用内存系统:配备高带宽
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =