- 用Python实现SFM
薄辉
pythonopencv计算机视觉人工智能图像处理
SFM(结构化光流法)是一种用于解决三维重建问题的方法,它可以根据许多二维图像和它们之间的相对位置,估计出三维场景的深度和摄像机的姿态。在Python中,你可以使用OpenCV库来实现SFM。下面是一个简单的例子,展示了如何使用OpenCV库的cv2.sfm_create函数来实现SFM:importcv2#读入图像,存入列表images中images=[]foriinrange(1,11):im
- 【小白深度教程 1.32】手把手教你从多视角图像进行 3D 重建(SfM 算法)
小寒学姐学AI
3d算法计算机视觉人工智能深度学习python三维重建
【小白深度教程1.32】手把手教你从多视角图像进行3D重建(SfM算法)1.SfM三维重建算法简介2.SfM方法和原理3.安装依赖库4.构建数据集5.可视化结果6.完整代码1.SfM三维重建算法简介从多张照片中开发三维模型被称为多视图3D重建。数码相机的进步以及图像分辨率和清晰度的提高,使得利用仅有的相机而非昂贵的特殊传感器来重建3D图像成为可能。重建的目标是从一组照片中推导场景的几何结构,假设摄
- 关于重投影误差小记
文弱_书生
乱七八糟数码相机算法
重投影误差(ReprojectionError)讲解1.什么是重投影误差?在三维重建或相机标定过程中,我们希望将一个世界坐标系中的三维点投影到相机的图像平面上。理想情况下,该点的投影位置应该与实际图像中的观测点(如特征点)完全匹配,但由于噪声、相机模型的不准确性或优化算法的误差,这两个点可能会有偏差。重投影误差就是这个偏差的度量,即:e=∥pobserved−preprojected∥e=\|p_
- 单目3d重建DUSt3R 笔记
AI算法网奇
3D视觉人工智能
目录DUSt3R三维重建报错RecursionError:maximumrecursiondepthexceededincomparison报错numpy.core.multiarrayfailedtoimport报错Numpyisnotavailable解决升级版mast3r速度变慢修改了参数设置脚本:测试效果操作技巧DUSt3R三维重建git地址:GitHub-naver/dust3r:DUS
- 论文阅读《Semantic Stereo Matching with Pyramid Cost Volumes》
cunese0088
深度学习
SSPCV-Net(语义立体匹配网络)目的:进一步捕捉视差的细节主要模块:数据集:SceneFlow,KITTI2012,KITTI2015,Cityscape(比较泛化能力)-------------------------------------------------------------------------------------------------------Concatevo
- PCL 最小二乘拟合空间曲线
点云侠
点云进阶算法c++计算机视觉3d开发语言
目录一、曲线拟合1、算法原理2、参考文献二、代码实现三、结果展示四、测试数据本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。博客长期更新,最近一次更新时间为:2024年7月14日。①代码在PCL1.14.1中运行;②完善代码;③新增标准测试数据一、曲线拟合1、算法原理 电力线三维重建指将提取得到的单根电力线进行精确矢量化。在理想情况下,
- 【Python】OpenCV算法使用案例全解
岱宗夫up
教学opencv计算机视觉人工智能算法
OpenCV算法使用案例全解前言OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库,它提供了大量的图像和视频处理功能。从简单的图像滤波到复杂的三维重建,OpenCV涵盖了计算机视觉领域的众多算法。本文将详细介绍OpenCV中常见算法的使用案例,帮助读者更好地理解和应用这些强大的工具。一、图像处理基础(一)滤波操作滤波是图像处理中最基
- 【openCV-66】内参矩阵和外参矩阵
华东算法王
华东算法王-opencvopencv矩阵人工智能
外参矩阵与内参矩阵在计算机视觉、相机标定和三维重建等领域,内参矩阵和外参矩阵是描述相机如何将三维世界映射到二维图像的重要工具。它们分别描述了相机的内部特性和外部位置,是相机标定的核心组成部分。1.内参矩阵(IntrinsicMatrix)内参矩阵描述了相机内部的几何特性,主要涉及焦距、光心和像素的比例等参数。它通常是一个3x3的矩阵,用来将相机的归一化坐标系转换为像素坐标系。1.1内参矩阵的组成内
- 立体匹配常用数据集整理
Scurry﹉
人工智能深度学习计算机视觉
文章目录前言一、常用数据集1.SceneFlow数据集2.KITTI数据集3.Middlebury数据集二、关于自己构建数据集训练的一些问题前言本文主要对立体匹配算法常用的公开数据集进行整理,包括数据集的简要介绍和下载链接,以及自己构建数据集训练的一些问题。一、常用数据集1.SceneFlow数据集Sceneflow数据集是CVPR2016提出的,其目的就是构建一个大规模的合成数据集,用来训练深度
- 三维重建(十三)——多视角重建
周末不下雨
三维重建三维重建3d
文章目录一、多视角重建1.1SFM(StructurefromMotion)1.2NRSFM(Non-RigidStructurefromMotion)1.3TheRelightables:VolumetricPerformanceCaptureofHumanswithRealisticRelighting二、基于可微渲染的多视角重建三、数据采集策略3.1相机配置与布置3.2视角覆盖与重叠3.3光
- CVPR2023 Highlight | ECON:最新单图穿衣人三维重建SOTA算法
3D视觉工坊
3D视觉从入门到精通算法SLAM自动驾驶3D视觉
作者:宁了个宁|来源:计算机视觉工坊在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf。添加微信:dddvisiona,备注:三维重建,拉你入群。文末附行业细分群。图1所示。从彩色图像进行人体数字化。ECON结合了自由形式隐式表示的最佳方面,以及明确的拟人化正则化,以推断高保真度的3D人类,即使是宽松的衣服或具有挑战性的姿势。0.笔者个人体会这篇文章讨论了单图像的穿着人类重建问题。隐式方
- 基于OpenCV的单目测距
_老码
项目实战opencv人工智能计算机视觉
随着计算机视觉技术的发展,单目测距作为一种重要的视觉测量手段,在众多领域得到了广泛的应用。本文将探讨基于OpenCV的单目测距原理、局限性、实际应用场景以及一些优化方案。单目测距的原理单目测距是指利用一台摄像机拍摄到的单一图像来进行距离测量的技术。与双目测距相比,单目测距不需要复杂的立体匹配算法,因此具有计算量小、实现简单的特点。然而,单目测距也面临着许多挑战,如尺度模糊性、深度信息缺乏等问题。单
- 华为 ADS 3.0 与特斯拉 FSD V12:自动驾驶技术的巅峰对决与未来展望
中科宁图
华为自动驾驶人工智能
一、华为ADS3.0:多传感器融合的卓越代表(一)硬件与技术特色华为ADS3.0智能驾驶系统构建了全面的全息感知体系,融合激光雷达、高清摄像头、毫米波雷达、超声波传感器等多种设备。激光雷达实现环境三维重建和精确测距,在恶劣条件下仍能准确捕捉物体信息;高分辨率摄像头获取视觉信息;毫米波雷达在极端天气下强化对移动物体探测;超声波传感器辅助近距离障碍物检测。GOD网络融合处理多传感器数据,为决策提供坚实
- 3dgs 2025 学习笔记
AI算法网奇
3d渲染学习笔记
CVPR20243D方向总汇包含(3DGS、三维重建、深度补全、深度估计、全景定位、表面重建和特征匹配等)_cvpr2024-structure-awaresparse-viewx-ray3dreconstr-CSDN博客https://github.com/apple/ml-hugs3DGSCOLMAP-Free3DGaussianSplatting⭐codeprojectFeature3DGS
- 三维重建(九)——如何完成一篇好文章
周末不下雨
三维重建人工智能深度学习
文章目录一、撰写顶会论文1.1顶会激烈1.2提高文章接收的概率1.3撰写一篇出色的论文二、论文写作中最大的错误三、在开始之前要问自己的一些问题(从现在就要开始想)四、如何讲述一个故事五、如何讲述一个科研故事5.1解决什么问题5.2如何解决5.3解决的结果六、策略七、CVPR的审稿表八、其他8.1oral、spotlight、poster8.2一些醒悟的话8.3以后会讲的东西以顶会论文为例——最高标
- 【图像处理】基于双目立体匹配的景深计算(Matlab代码实现)
然哥爱编程
图像处理matlab数码相机
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述1.双目相机标定2.图像预处理3.特征提取与匹配4.视差计算5.深度图生成与校正6.景深计算7.误差分析与优化应用领域2运行结果3参考文献4Matlab代码实现1概述双目立体匹配一直是双眼视觉的研究热点。双目相机捕获同一场景的左右视点图像,使用立体匹配
- 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.25 视觉风暴:NumPy驱动数据可视化
精通代码大仙
numpypythonnumpypython信息可视化
1.25视觉风暴:NumPy驱动数据可视化目录视觉风暴:NumPy驱动数据可视化百万级点云实时渲染优化CT医学影像三维重建实战交互式数据分析看板开发地理空间数据可视化进阶WebAssembly前端渲染融合1.25.1百万级点云实时渲染优化1.25.2CT医学影像三维重建实战1.25.3交互式数据分析看板开发1.25.4地理空间数据可视化进阶1.25.5WebAssembly前端渲染融合视觉风暴:N
- 双目视觉之获取三维坐标(立体校正、Q矩阵与三角测量原理)
乐平要加油啊
YOLO+双目视觉计算机视觉opencv
前言双目视觉是一种模拟人类立体视觉的计算机视觉技术,它通过两个相机从不同的角度拍摄同一个场景,然后利用三角测量原理,计算出场景中物体的三维坐标信息。这种技术在机器人导航、自动驾驶、物体跟踪、三维重建等领域有广泛的应用。获取三维坐标是双目视觉的核心任务之一。通过对左右相机拍摄的图像进行特征匹配和视差计算,我们可以得到场景中每个像素点的视差值。视差值表示了同一个物体在左右图像中的位置差异,它与物体距离
- 激光线扫标定和相机标定:中高级C++程序员与计算机视觉工程师的指南
m0_57781768
数码相机c++计算机视觉
激光线扫标定和相机标定:中高级C++程序员与计算机视觉工程师的指南简介在计算机视觉和机器人领域,激光标定和相机标定是实现高精度测量和检测的关键技术。激光线扫标定和相机标定在许多应用中都是必不可少的,如自动驾驶、工业检测、三维重建等。本文将详细介绍激光线扫标定和相机标定的基本概念、实现细节以及常见问题的解决方案。目标读者为中高级C++程序员和计算机视觉工程师,文章将提供详细的技术细节和代码示例,确保
- OpenCV相机标定与3D重建(66)对立体匹配生成的视差图(disparity map)进行验证的函数validateDisparity()的使用
jndingxin
OpenCVopencv3d
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述使用左右检查来验证视差。矩阵“cost”应该由立体对应算法计算。cv::validateDisparity函数是OpenCV库中用于对立体匹配生成的视差图(disparitymap)进行后处理的一个工具。其主要功能是对计算出的视差值进行验证,确保相邻像素间的视差值
- 3d系统误差分析
Ai智享
结构光3d数码相机计算机视觉
系统标定重投影误差预估在计算机视觉和三维重建领域中,评估一个相机系统标定精度的重要指标。通过比较真实的三维点在图像中的投影位置与标定模型计算出的投影位置之间的差异,来衡量标定的准确性。以下是对这一概念的详细解析:什么是系统标定?系统标定(SystemCalibration)是指对一个视觉系统(例如单目相机、双目相机系统或结构光系统)进行参数标定的过程,包括:内参标定:相机的内部参数(如焦距、光心、
- PCL点云处理算法汇总(C++长期更新低价精品版)
点云侠'
点云学习算法c++开发语言计算机视觉
可笑,我当然知道是抄袭的啊,还用你提醒?要不是你们审核不作为,我能抄这么明目张胆???目录一、点云滤波1、常用滤波器2、采样滤波3、裁剪滤波二、KD树与八叉树1、KD树2、八叉树三、点云配准粗配准精配准对应关系配准精度坐标转换刚体运动变换四、点云拟合分割1、RANSAC2、其他几何分割五、三维重建六、特征点与特征描述1、点云的属性2、关键点提取3、特征描述子七、基础函数1、common模块2、其他
- yolov5单目测距+速度测量+目标跟踪
cv_2025
YOLO目标跟踪人工智能计算机视觉机器学习图像处理opencv
要在YOLOv5中添加测距和测速功能,您需要了解以下两个部分的原理:单目测距算法单目测距是使用单个摄像头来估计场景中物体的距离。常见的单目测距算法包括基于视差的方法(如立体匹配)和基于深度学习的方法(如神经网络)。基于深度学习的方法通常使用卷积神经网络(CNN)来学习从图像到深度图的映射关系。单目测距代码单目测距涉及到坐标转换,代码如下:defconvert_2D_to_3D(point2D,R,
- 深度学习特征提取魔改版太强了!发文香饽饽!
深度之眼
深度学习干货人工智能干货人工智能深度学习机器学习论文特征提取
要说CV领域经久不衰的研究热点,特征提取可以占一席,毕竟SLAM、三维重建等重要应用的底层都离不开它。再加上近几年深度学习兴起,用深度学习做特征提取逐渐成了主流,比传统算法无论是性能、准确性还是效率都更胜一筹。目前比较常见的深度学习特征提取方法有基于transformer、基于CNN、基于LSTM以及基于GAN,都发展的比较成熟。但为了追求更快速、准确、鲁棒的特征点提取,研究者们开始致力于改进深度
- **深度融合未来——DI-Fusion:开启在线三维重建新篇章**
余靖年Veronica
深度融合未来——DI-Fusion:开启在线三维重建新篇章在三维世界探索的前沿,一项名为DI-Fusion的技术正悄然掀起一波科技浪潮。由清华大学的JiahuiHuang、Shi-ShengHuang等人共同研发,这项创新成果已在CVPR2021上大放异彩,它的出现标志着在线隐式三维重构领域的重大突破。项目介绍重塑三维视觉新纪元DI-Fusion,又称为深度融合,是一项基于RGB-D流数据的新型在
- Unique3D:开启单张图片三维重建新篇章
余靖年Veronica
Unique3D:开启单张图片三维重建新篇章Unique3DOfficialimplementationofUnique3D:High-QualityandEfficient3DMeshGenerationfromaSingleImage项目地址:https://gitcode.com/gh_mirrors/un/Unique3D在当今高速发展的科技领域中,三维重建技术正以惊人的速度改变着我们的视
- unity3d 大地图接壤_多人紧密交互场景下的多视角人体动态三维重建方法与流程...
weixin_39947908
unity3d大地图接壤
本发明属于计算机视觉和图形学领域,具体讲,涉及人体关键点检测、追踪和人体三维模型重建方法。背景技术:在计算机视觉和计算机图形学中,无标记人体运动捕捉已经成为一个热门并且具有挑战性的热点问题,其主要任务是通过跟踪视频中移动对象的运动来恢复动态时间一致的3D形状。最近十年以来单人运动捕捉方法取得了巨大的进步,然而当前的方法需要对相机进行设置或处于一个受控的工作室环境中,并且依赖于良好的图像分割技术。在
- 【小白深度教程 1.5】手把手教你用立体匹配进行双目深度估计,以及 3D 点云生成(含 Python 代码解读)
小寒学姐学AI
从零开始的深度补全和深度估计3dpython人工智能计算机视觉自动驾驶深度学习笔记
【小白深度教程1.5】手把手教你用立体匹配进行双目深度估计,以及3D点云生成(含Python代码解读)1.立体匹配的原理2.块匹配算法(BlockMatchingAlgorithm)2.1代码中的立体匹配过程概述2.2代码原理及公式2.2.1.窗口匹配和代价函数(SAD)2.2.2.匹配过程2.2.3.视差图生成2.3代码的整体算法流程2.4性能与优化3.加载双目图像计算视差4.读取相机参数并计算
- 通俗易懂学nerf——初识nerf
四个字
通俗易懂学nerf人工智能自动驾驶python
nerf,听起来像是一个神秘的魔法词汇,但它其实是一种前沿且超酷的技术!它是能让你从二维世界“跃升”到三维空间的神奇技术。想象一下,你手里有一张平面的照片,上面的风景、建筑都是扁平的,仿佛缺少了生命力。但有了NERF三维重建,这一切都变得鲜活起来!它就像是个超级魔术师,轻轻一挥,那张平面的照片就变成了立体的三维模型,仿佛你可以走进去,感受那里的空气、触摸那里的物体。nerf是怎么做到的呢?其实它的
- NeRF——基于神经辐射场的三维场景重建和理解
知来者逆
数字人NeRF3D重建3d计算机视觉人工智能
概述三维重建是一种将物理世界中的实体转换为数字模型的计算机技术。其基本概念是通过对物理世界中的物体或场景进行扫描或拍摄,并使用计算机算法将其转换为三维数字模型。抽象意义上的三维模型指的是:形状和外观的组合,并且可以渲染成不同视角下真实感强烈的RGB图像。三维重建技术可以应用于许多领域,如建筑设计、游戏开发、虚拟现实等。通过三维重建技术,可以快速、准确地获取物体的几何形状、纹理、颜色等信息,从而实现
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。